Skip to main content
Log in

Investigation of the thermal behavior of inclusion complexes with antifungal activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The indiscriminate use of antifungal agents has led to the advancement of microorganisms tolerant to the various drugs known in the market. Therefore, the search for new compounds and new technologies capable of giving more stable formulations and better pharmacological activities is of paramount importance as an alternative for the development of new therapeutics. However, its effectiveness is directly related to the knowledge of its characteristics in the solid state. Thus, the objective of this work was evaluating the thermal behavior, physicochemical aspects and microbiological of the complexes of inclusion of β-cyclodextrin (BCD) and biphenyl-4-methyl carboxylate (B4CMET). Therefore, differential scanning calorimetry, thermogravimetry, Fourier-transformed infrared spectroscopy, X-ray diffraction and microbiological assay were used to generate robust fingerprint of the inclusion complexes. The results showed the formation of inclusion complexes of B4CMET with βCD, thereby stressing its greater stability and potential use as an antifungal agent against Candida spp. Thus, with thermoanalytical techniques it was possible to observe the increased thermal stability, with FTIR changes of characteristic bands were verified, with XRD the disappearance of diffraction peaks of the B4CMET was verified, and with the microbiological assay it was possible to visualize increased antifungal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferronatto R, Marchesan ED, Pezenti E, Bednarski F, Onofre SB. Atividade antimicrobiana de óleos essenciais produzidos por Baccharis dracunculifolia D.C. e Baccharis uncinella D.C. (Asteraceae). Rev Bras Farmacogn. 2007;17:224–30.

    Article  CAS  Google Scholar 

  2. Deus RJA, Alves CN, Arruda MSP. Avaliação do efeito antifúngico do óleo resina e do óleo essencial de copaíba (Copaifera multijuga Hayne). Bras Pl Med. 2011;13:1–7.

    Article  CAS  Google Scholar 

  3. Maggio RM, Calvo NL, Vignaduzzo SE, Kaufman TS. Pharmaceutical impurities and degradation products: uses and applications of NMR techniques. J Pharm Biomed Anal. 2014;101:102–22.

    Article  CAS  PubMed  Google Scholar 

  4. Koradia V, Diego HL, Frydenvang K, Ringkjøbing-Elema M, Bond A, Müllertz A, Rantanen J. Solid forms of amlodipine besylate: physicochemical, structural and thermodynamic characterization. Cryst Growth Des. 2010;10:5279–90.

    Article  CAS  Google Scholar 

  5. Moura EA, Correia LP, Pinto MF, Procópio JVV, Souza FS, Macedo RO. Thermal characterization of the solid state and raw material fluconazole by thermal analysis and pyrolysis coupled to GC/MS. J Therm Anal Calorim. 2010;100:289–93.

    Article  CAS  Google Scholar 

  6. Böer TM, Procópio JV, Nascimento TG, Macêdo RO. Correlation of thermal analysis and pyrolysis coupled to GC–MS in the characterization of tacrolimus. J Pharm Biomed. 2013;73:18–23.

    Article  CAS  Google Scholar 

  7. Daneluti ALM, Matos JR. Study of thermal behavior of phytic acid. Braz J Pharm Sci. 2013;49:275–83.

    Article  CAS  Google Scholar 

  8. Sangeetha MK, Mariappan M, Madhurambal G, Mojumdar SC. TG–DTA, XRD, SEM, EDX, UV, and FT-IR spectroscopic studies of l-valine thiourea mixed crystal. J Therm Anal Calorim. 2015;119:907–13.

    Article  CAS  Google Scholar 

  9. Lyra MAM, Alves LDS, Fontes DAF, Soares-Sobrinho JL, Rolim-Neto PJ. Ferramentas analíticas aplicadas à caracterização de complexos de inclusão fármaco-ciclodextrina. Rev Ciênc Farm Básica Apl. 2010;31:117–24.

    CAS  Google Scholar 

  10. Ford JL, Mann TE. Fast-scan DSC and its role in pharmaceutical physical form characterisation and selection. Adv Drug Deliv Rev. 2012;64:422–30.

    Article  CAS  PubMed  Google Scholar 

  11. Guan Y, Wang C, Wang D, Dang G, Chen C, Zhou H, Zhao X. High transparent polyimides containing pyridine and biphenyl units: synthesis, thermal, mechanical, crystal and optical properties. Polymer. 2015;62:1–10.

    Article  CAS  Google Scholar 

  12. Silva Júnior WF, Pinheiro JGO, Pinheiro CDLFAM, Barbosa ALREG, Lima ES, Veiga Júnior VF, Silva Júnior AA, Aragão CFS, Lima AAN. Thermal behavior and thermal degradation kinetic parameters of triterpene α, β amyrin. J Therm Anal Calorim. 2017;127:1757–66.

    Article  CAS  Google Scholar 

  13. Yang H, Huang Z, Huang Y, Dong W, Pan Z, Wang L. Characterization of Chinese crude propolis by pyrolysis gaschromatography/mass spectrometry. J Anal Appl Pyrolysis. 2015;113:158–64.

    Article  CAS  Google Scholar 

  14. Tolu J, Gerber L, Boily J-F, Bindlera R. High-throughput characterization of sediment organic matter by pyrolysis–gas chromatography/mass spectrometry and multivariate curve resolution: a promising analytical tool in (paleo)limnology. Anal Chim Acta. 2015;880:93–102.

    Article  CAS  PubMed  Google Scholar 

  15. Ge S, Xu Y, Tian Z, She S, Huang L, Zhang Z, Hu Y, Weng J, Cao M, Sheng L. Pyrolysis study of pectin by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. J Therm Anal Calorim. 2015;120:1399–1405.

    Article  CAS  Google Scholar 

  16. Kusch P, Rieser C, Knupp G, Mang T. Characterization of copolymers of methacrylic acid with poly(ethylene glycol) methyl ether methacrylate macromonomersby analytical pyrolysis–gas chromatography/mass spectrometry(Py–GC/MS). J Anal Appl Pyrolysis. 2015. https://doi.org/10.1016/j.jaap.2015.03.003.

    Article  Google Scholar 

  17. Vianna-Filho RP, Petkowicz CL, Silveira JL. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr Polym. 2013;93:266–72.

    Article  CAS  PubMed  Google Scholar 

  18. Amorim SR, Klier AH, Angelis LH. Controle de qualidade na indústria farmacêutica: identificação de substâncias por espectroscopia no infravermelho. Rev Bras Farm. 2013;94:234–42.

    CAS  Google Scholar 

  19. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. CLSI Document M27A3. 3 ed. v.28. n.14. Wayne, PA, USA, 2008.

  20. Serafini MR, Menezes PP, Costa LP, Lima CM, Quintans LJ Jr, Cardoso JC, Matos JR, Soares-Sobrinho JL, Grangeiro S Jr, Nunes PS, Bonjadim LR, Araújo AAS. Interaction of p-cymene with b-cyclodextrin. J Therm Anal Calorim. 2012;109:951–5.

    Article  CAS  Google Scholar 

  21. Menezes PP, Serafini MR, Quintans-Júnior LJ, Silva GF, Oliveira JF, Carvalho FMS, Souza JCC, Matos JR, Alves PB, Matos IL, Hădărugă DI, Araújo AAS. Inclusion complex of (2)-linalool and b-cyclodextrin. J Therm Anal Calorim. 2014;115:2429–437.

    Article  CAS  Google Scholar 

  22. Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE. Characterization of beta-cyclodextrin inclusion complexes containing an essential oil component. Food Chem. 2016;196:968–75.

    Article  CAS  PubMed  Google Scholar 

  23. Jadhav P, Pore Y. Physicochemical, thermodynamic and analytical studies on binary and ternary inclusion complexes of bosentan with hydroxypropyl-β-cyclodextrin. Bull Fac Pharm Cairo Univ. 2017;55:147–84.

    Article  Google Scholar 

  24. Xua J, Zhanga Y, Lia X, Zheng Y. Inclusion complex of nateglinide with sulfobutyl ether β-cyclodextrin: preparation, characterization and water solubility. J Mol Struct. 2017;1141:328–34.

    Article  CAS  Google Scholar 

  25. Cunha-Filho MSS, Sá-Barreto LCL. Utilização de ciclodextrinas na formação de complexos de inclusão de interesse farmacêutico. Rev Ciênc Farm Básica Apl. 2007;28:1–9.

    CAS  Google Scholar 

  26. Kfoury M, Sahraoui AL-H, Bourdon N, Laruelle F, Fontaine J, Auezova L, Greige-Gerges H, Fourmentin S. Solubility, photostability and antifungal activity of phenylpropanoids encapsulated in cyclodextrins. Food Chem. 2016;196:518–25.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Zhang H, Xu Z, Wu M, Xia W, Zhang W. Chimonanthus praecox extract/cyclodextrin inclusion complexes: selective inclusion, enhancement of antioxidant activity and thermal stability. Ind Crop Prod. 2017;95:60–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando José de Lima Ramos Júnior.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Ramos Júnior, F.J., da Silva, K.M.A., Brandão, D.O. et al. Investigation of the thermal behavior of inclusion complexes with antifungal activity. J Therm Anal Calorim 133, 641–648 (2018). https://doi.org/10.1007/s10973-018-7040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7040-2

Keywords

Navigation