Skip to main content
Log in

Pyrolysis study of pectin by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition of pectin was studied, and some major products were online analyzed by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS). The principal products were furfural, methyl 2-furoate and 5-oxo-tetrahydro-furan-2-carbaldehyde. Some new high molecular weight intermediate products were firstly observed thanks to the soft ionization and MSMS structural analysis of ions. The results demonstrated the variation of the pyrolysis product pool with temperatures, dividing the thermal decomposition process into two stages: the low-temperature stage for the intramolecular pyrolysis of galacturonic acid subunit at the chain ends of polymers and the high-temperature stage for the rupture of α-(1 → 4) glycosidic bond between galacturonic acid subunit. This work reported a new application of SVUV-PIMS in pectin pyrolysis and demonstrated its good performance in product analysis. The formation mechanisms of some major products from pectin pyrolysis were discussed based on the analysis of pyrolysates, which should provide insight into the pyrolysis behavior of pectin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Ralet MC, Lerouge P, Quéméner B. Mass spectrometry for pectin structure analysis. Carbohydr Res. 2009;344:1798–807.

    Article  CAS  Google Scholar 

  2. Rouau X, Thibautt JF. Apple juice pectic substances. Carbohydr Polym. 1984;4:111–25.

    Article  CAS  Google Scholar 

  3. Thakur BR, Singh RK, Handa AK, Rao MA. Chemistry and uses of pectin—a review. Crit Rev Food Sci. 1997;37:47–73.

    Article  CAS  Google Scholar 

  4. Squire KS, Waymack BE. Thermal decomposition of pectin. 35th tobacco science research conference. 1981. p. 47.

  5. Ohhishi A, Takagi E, Kato K. Thermal decomposition of pectic substances. Carbohydr Res. 1978;67:281–8.

    Article  Google Scholar 

  6. Zhou S, Xu YB, Wang CH, Tian ZF. Pyrolysis behavior of pectin under the conditions that simulate cigarette smoking. J Anal Appl Pyrolysis. 2011;91:232–40.

    Article  CAS  Google Scholar 

  7. McGrath T, Sharma R, Hajaligol M. An experimental investigation into the formation of polycyclic-aromatic hydrocarbons (PAH) from pyrolysis of biomass materials. Fuel. 2001;80:1787–97.

    Article  CAS  Google Scholar 

  8. Ulrike ES, Herbert K, Gerhard D. Thermal analysis of chemically and mechanically modified pectins. Food Hydrocoll. 2007;2:1101–12.

    Google Scholar 

  9. Aries RE, Gutteridge CS, Laurie WA. A pyrolysis-mass spectrometry investigation of pectin methylation. Anal Chem. 1988;60:1498–502.

    Article  CAS  Google Scholar 

  10. Bahng MK, Mukarakate C, Robichaud DJ, Nimlos MR. Current technologies for analysis of biomass thermochemical processing: a review. Anal Chim Acta. 2009;65:117–38.

    Article  Google Scholar 

  11. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H. Thermal decomposition of RDX/AP by TG–DSC–MS–FTIR. J Therm Anal Calorim. 2014;116:1125–31.

    Article  CAS  Google Scholar 

  12. Quan C, Li A, Gao N. Research on pyrolysis of PCB waste with TG–FTIR and Py-GC/MS. J Therm Anal Calorim. 2012;110:1463–70.

    Article  CAS  Google Scholar 

  13. Hao JF, Guo JZ, Ding L. TG–FTIR, Py-two-dimensional GC–MS with heart-cutting and LC–MS/MS to reveal hydrocyanic acid formation mechanisms during glycine pyrolysis. J Therm Anal Calorim. 2014;115:667–73.

    Article  CAS  Google Scholar 

  14. Qi F. Combustion chemistry probed by synchrotron VUV photoionization mass spectrometry. Proc Combust Inst. 2013;34:33–63.

    Article  CAS  Google Scholar 

  15. Cool TA, Nakajima K, Mostefaoui TA, Qi F, McIlroy A, Westmoreland PR, Law ME, Poisson L, Peterka DS, Ahmed M. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. J Chem Phys. 2003;119:8356–65.

    Article  CAS  Google Scholar 

  16. Pan Y, Zhang LD, Guo HJ, Deng LL, Qi F. Photoionisation and photodissociation studies of nonvolatile organic molecules by synchrotron VUV photoionisation mass spectrometry and theoretical calculations. Int Rev Phys Chem. 2010;29:369–401.

    Article  CAS  Google Scholar 

  17. Weng JJ, Jia LY, Wang Y, Sun SB, Tang XF, Zhou ZY, Kohse-Hoinghaus K, Qi F. Pyrolysis study of poplar biomass by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Proc Combust Inst. 2013;34:2347–54.

    Article  CAS  Google Scholar 

  18. Fang WZ, Gong L, Shan XB, Sheng LS. Thermaldesorption/tunable vacuum-ultraviolet time-of-flight photoionization aerosol mass spectrometry for investigating secondary organic aerosols in chamber experiments. Anal Chem. 2011;83:9024–32.

    Article  CAS  Google Scholar 

  19. Linda P, Marino G, Pignataro S. A comparison of sensitivities to substituent effects of five-membered heteroaromatic rings in gas phase ionization. J Chem Soc B. 1971;1:1585–7.

    Article  Google Scholar 

  20. Grutzmacher HF, Spilker R. Loss of CO from 4,6-dimethyl-2-pyrone and 2,6-dimethyl-4-pyrone radical cations. Org Mass Spectrom. 1985;20:258–9.

    Article  Google Scholar 

  21. Moldoveanu SC. Analytical pyrolysis of natural organic polymers. 1st ed. Amsterdamp: Elsevier Science B.V; 1998.

    Google Scholar 

  22. Klapstein D, MacPherson CD, O’Brien RT. The photoelectron spectra and electronic structure of 2-carbonyl furans. Can J Chem. 1990;68:747–54.

    Article  CAS  Google Scholar 

  23. Traeger JC, McLouglin RG, Nicholson AJC. Heat of formation for acetyl cation in the gas phase. J Am Chem Soc. 1982;104:5318–22.

    Article  CAS  Google Scholar 

  24. Veszpremi T, Nyulaszi L, Nagy J. Ultraviolet photoelectron spectroscopy and quantum-mechanical study of alkyl-and trimethylsilyl-furanes. J Organomet Chem. 1987;331:175–80.

    Article  CAS  Google Scholar 

  25. Dewar MJS, Worley SD. Photoelectron spectra of molecules. I. Ionization potentials of some organic molecules and their interpretation. J Chem Phys. 1969;50:654–67.

    Article  CAS  Google Scholar 

  26. Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J Chem Phys. 1999;110:2822–7.

    Article  CAS  Google Scholar 

  27. Brown AL, Dayton DC, Nimlos MR, Daily JW. Characterization of biomass pyrolysis vapors with molecular beam, single photon ionization time-of-flight mass spectrometry. Chemosphere. 2001;42:663–9.

    Article  CAS  Google Scholar 

  28. Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sustain Energy Rev. 2014;38:594–608.

    Article  CAS  Google Scholar 

  29. Couhert C, Commandre JM, Salvador S. Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin. Fuel. 2009;88:408–17.

    Article  CAS  Google Scholar 

  30. Madson MA, Feather MS. Acid-catalyzed decarboxylation of d-xyluronic, d-galacturonic and D-gly-cero-D-gulo-hepturonic acid. Carbohydr Res. 1979;70:307–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from China National Tobacco Corporation [No. 110201301030(BR-05)] is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaolin Ge or Liusi Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, S., Xu, Y., Tian, Z. et al. Pyrolysis study of pectin by tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. J Therm Anal Calorim 120, 1399–1405 (2015). https://doi.org/10.1007/s10973-015-4440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4440-4

Keywords

Navigation