Skip to main content
Log in

Mechanical, thermal, and fire retardant properties of poly(ethylene terephthalate) fiber containing zinc phosphinate and organo-modified clay

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of zinc bisdiethylphosphinate (ZnPi) and organoclay on mechanical, thermal, and flame retardant properties of poly(ethylene terephthalate) (PET) fiber was investigated. ZnPi was preferred due to its fusible character at spinning temperature and organoclay was used for synergistic interaction. The mechanical, thermal, and flame retardant properties of fibers were examined by tensile testing, thermogravimetric analysis (TG), and micro combustion calorimeter (MCC). The tensile strength of the PET fiber reduced with the addition of both ZnPi and organoclay. The TG results showed that the inclusion of ZnPi increased the char residue. The MCC results showed that the addition of organoclay increased the barrier effect of formed char which depends on char amount, thickness, and integrity and reduces the maximum heat evolved during the test. This result was also important in terms of showing that the organoclay was effective in thermally thin samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mclntyre JE. Synthetic fibers: nylon, polyester, acrylic, polyolefin. Cambridge: CRC Press; 2000.

    Google Scholar 

  2. Lewin M. Handbook of fiber chemistry. New York: CRC Press; 2007.

    Google Scholar 

  3. Weil ED, Levchik SV. Flame retardants for plastics and textiles. Munich: Hanser Publications; 2009.

    Book  Google Scholar 

  4. Levchik SV, Weil ED. Flame redardancy of thermoplastic polyesters—a review of the recent literature. Polym Int. 2005;54:11–35.

    Article  CAS  Google Scholar 

  5. Zhang S, Horrocks AR. A review of flame retardant polypropylene fibres. Prog Polym Sci. 2003;28:1517–38.

    Article  CAS  Google Scholar 

  6. Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA. Developments in flame retardant textiles—a review. Polym Degrad Stab. 2005;88:3–12.

    Article  CAS  Google Scholar 

  7. Morgan AB, Wilkie CA. Flame retardant polymer nanocomposites. Hoboken: Wiley; 2007.

    Book  Google Scholar 

  8. Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci. 2010;35:902–58.

    Article  CAS  Google Scholar 

  9. Samyn F, Bourbigot S, Jama C, Bellayer S. Fire retardancy of polymer clay nanocomposites. Is there an influence of the nanomorphology? Polym Degrad Stab. 2008;93:2019–24.

    Article  CAS  Google Scholar 

  10. Bourbigot S, Duquesne S, Jama C. Polymer nanocomposites: how to reach low flammability. Macromol Symp. 2006;233:180–90.

    Article  CAS  Google Scholar 

  11. Morgan AB, Wilkie CA. Flame retardant polymer nanocomposites. New York: CRC Press; 2010.

    Google Scholar 

  12. Erdem N, Cireli AA, Erdogan UH. Flame retardancy behaviors and structural properties of polypropylene/nano-SiO2 composite textile filaments. J Appl Polym Sci. 2009;111:2085–91.

    Article  CAS  Google Scholar 

  13. Vargas AF, Orozco VH, Rault F, Giraud S, Devaux E, Lopez BL. Influence of fiber-like nanofillers on the rheological, mechanical, thermal and fire properties of polypropylene: an application to multifilament yarn. Compos Part A. 2010;41:1797–806.

    Article  Google Scholar 

  14. Horrocks AR, Kandola BK, Smart G, Zhang S, Hull TR. Polypropylene fibers containing dispersed clays having improved fire performance. I. Effect of nanoclays on processing parameters and fiber properties. J Appl Polym Sci. 2007;106:1707–17.

    Article  CAS  Google Scholar 

  15. Rault F, Pleyber E, Campagne C, Rochery M, Giraud S, Bourbigot S, Devaux E. Effect of manganese nanoparticles on the mechanical, thermal and fire properties of polypropylene multifilament yarn. Polym Degrad Stab. 2009;94:955–64.

    Article  CAS  Google Scholar 

  16. Rault F, Campagne C, Rochery M, Giraud S, Devaux E. Polypropylene multifilament yarn filled with clay and/or graphite: study of a potential synergy. J Polym Sci Part B Polym Phys. 2010;48:1185–95.

    Article  CAS  Google Scholar 

  17. Shanmuganathan K, Deodhar S, Dembsey NA, Fan Q, Patra PK. Condensed-phase flame retardation in nylon 6-layered silicate nanocomposites: films, fibers, and fabrics. Polym Eng Sci. 2008;48:662–75.

    Article  CAS  Google Scholar 

  18. Bourbigot S, Devaux E, Flambard X. Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polym Degrad Stab. 2002;75:397–402.

    Article  CAS  Google Scholar 

  19. Salaün F, Lewandowski M, Vroman I, Bedek G, Bourbigot S. Development and characterization of flame retardant fibres from isotactic polypropylene melt compounded with melamine formaldehyde microcapsules. Polym Degrad Stab. 2011;96:131–43.

    Article  Google Scholar 

  20. Smart G, Kandola BK, Horrocks AR, Nazare S, Marney D. Polypropylene fibers containing dispersed clays having improved fire performance. Part II. Characterization of fibers and fabrics from PP-nanoclay blends. Polym Adv Technol. 2008;19:658–70.

    Article  CAS  Google Scholar 

  21. Alongi J. Investigation on flame retardancy of poly(ethylene terephthalate) for plastics and textiles by combination of an organo-modified sepiolite and Zn phosphinate. Fiber Polym. 2011;12:166–73.

    Article  CAS  Google Scholar 

  22. Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flameretardant polypropylene with a novel charring agent. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2211-z.

    Google Scholar 

  23. Xu T, Zhong Y, Liu Y, Yu H, Mao Z. Flammability properties of PI fabric coated with montmorillonite. J Therm Anal Calorim. 2012. doi:10.1007/s10973-012-2549-2.

    Google Scholar 

  24. Levchik SV, Weil ED. A review of recent progress in phosphorus-based flame retardants. J Fire Sci. 2006;24:345–64.

    Article  CAS  Google Scholar 

  25. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fibre-reinforced poly(1,4-butylene terephthalate). Macromol Mater Eng. 2008;293:206–17.

    Article  CAS  Google Scholar 

  26. Isıtman NA, Gunduz HO, Kaynak C. Nanoclay synergy in flame retarded/glass fibre reinforced polyamide 6. Polym Degrad Stab. 2009;94:2241–50.

    Article  Google Scholar 

  27. Braun U, Schartel B, Fichera MA, Jager C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate and zinc borate in glass-fibre-reinforced polyamide 6,6. Polym Degrad Stab. 2007;92:1528–45.

    Article  CAS  Google Scholar 

  28. Vannier A, Duquesne S, Bourbigot S, Alongi J, Camino G, Delobel R. Investigation of the thermal degradation of PET, zinc phosphinate, OMPOSS and their blends—identification of the formed species. Polym Degrad Stab. 2009;495:155–66.

    CAS  Google Scholar 

  29. Lyon RE, Walters RN, Stoliarov SI. Screening flame retardants for plastics using microscale combustion calorimetry. Polym Eng Sci. 2007;47:1501–10.

    Article  CAS  Google Scholar 

  30. Yang CA, He Q, Lyon RE, Hu Y. Investigation of the flammability of different textile fabrics using microscale combustion calorimetry. Polym Degrad Stab. 2010;95:108–15.

    Article  CAS  Google Scholar 

  31. Nagano Y, Sugimoto Y. Micro combustion calorimetry aiming at 1 mg samples. J Therm Anal Calorim. 1999;57:867–74.

    Article  CAS  Google Scholar 

  32. Morgan AB, Galaska M. Microcombustion calorimetry as a tool for screening flame retardancy in epoxy. Polym Adv Technol. 2008;19:530–46.

    Article  CAS  Google Scholar 

  33. Xie W, Gao Z, Pan W, Hunter D, Singh A, Vaia R. Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater. 2001;13:2979–90.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Bayramlı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doğan, M., Erdoğan, S. & Bayramlı, E. Mechanical, thermal, and fire retardant properties of poly(ethylene terephthalate) fiber containing zinc phosphinate and organo-modified clay. J Therm Anal Calorim 112, 871–876 (2013). https://doi.org/10.1007/s10973-012-2682-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2682-y

Keywords

Navigation