Skip to main content
Log in

Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new phosphorylated mesoporous carbon (CMK-3-PO4) was synthesized by situ phosphorylation of concentrated phosphoric acid (85 %) using mesoporous carbon (CMK-3) as a template. The maximum monolayer adsorption capacity of adsorbents increased from 133.5 mg g−1 (CMK-3) to 485.4 mg g−1 (CMK-3-PO4) due to the extended oxygen functional groups, and the U(VI) adsorption on CMK-3-PO4 was endothermic and spontaneous in nature. The selective sorption ability of U(VI) was significantly improved after phosphorylation. The U(VI) in the CMK-3-PO4 could been eluted by 1.0 mol L−1 HCl and also had good reusing property, and this may offer the CMK-3-PO4 very promising application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Anirudhan TS, Radhakrishnan PG (2009) Improved performance of a biomaterialbased cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100:250–257

    Article  CAS  Google Scholar 

  2. ElSweify FH, Shehata MKK, ElShazly EAA (1995) Ion exchange studies of Arsenazo-III and thorium (IV) from aqueous solutions of Arsenazo-III with AG-2 × 8, Dowex-50 W × 8 and Chelex-100. J Radioanal Nucl Chem 198:77–87

    Article  CAS  Google Scholar 

  3. Kumari N, Prabhu D, Pathak P, Kanekar A, Manchanda V (2011) Extraction studies of uranium into a third-phase of thorium nitrate employing tributyl phosphate and N, N-dihexyl octanamide as extractants in different diluents. J Radioanal Nucl Chem 289:835–843

    Article  CAS  Google Scholar 

  4. Goldberg S, Criscenti LJ, Turner DR (2007) Modeling adsorption of metals and metalloids by soil components. Vadose Zone J 6:407–435

    Article  CAS  Google Scholar 

  5. Ryoo R, Joo SH, Jun S (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743–7746

    Article  CAS  Google Scholar 

  6. He J, Ma K, Jin J (2009) Preparation and characterization of octyl-modified ordered mesoporous carbon CMK-3 for phenol adsorption. Microporous Mesoporous Mater 121:173–177

    Article  CAS  Google Scholar 

  7. Liu G, Zheng S, Yin D (2006) Adsorption of aqueous alkylphenol ethoxylate surfactants by mesoporous carbon CMK-3. J Colloid Interface Sci 302:47–53

    Article  Google Scholar 

  8. Kruk M, Jaroniec M, Kim TW, Ryoo R (2003) Synthesis and characterization of hexagonally ordered carbon nanopipes. Chem Mater 15:2815–2823

    Article  CAS  Google Scholar 

  9. Darmstadt H, Roy C, Kaliaguine S, Kim TW, Ryoo R (2003) Surface and pore structures of CMK-5 ordered mesoporous carbons by adsorption and surface spectroscopy. Chem Mater 15:3300–3307

    Article  CAS  Google Scholar 

  10. Fan J, Yu C, Gao F (2003) Cubic Mesoporous Silica with Large Controllable Entrance Sizes and Advanced Adsorption Properties. Angew Chem Int Ed 42:3146–3150

    Article  CAS  Google Scholar 

  11. Vinu A, Miyahara M, Sivamurugan V (2005) Large pore cage type mesoporous carbon, carbon nanocage: a superior adsorbent for biomaterials. J Mater Chem 15:5122–5127

    Article  CAS  Google Scholar 

  12. Shuang C, Pan F, Zhou Q, Zhang M, Li A, Li P (2013) Adsorption of HA fractions with different molecular weight on magnetic polyacrylic anion exchange resin. Funct Nat Org Matter Changing Environ 01:177–180

    Article  Google Scholar 

  13. Caldas EM, Menezes EW, Pizzolato TM (2014) Ionic silsesquioxane film immobilized on silica applied in the development of carbon paste electrode for determination of methyl parathion. J Sol-Gel Sci Technol 72:282–289

    Article  CAS  Google Scholar 

  14. Behbahani M, Tapeh NAG, Mahyari M (2014) Monitoring of trace amounts of heavy metals in different food and water samples by flame atomic absorption spectrophotometer after preconcentration by amine-functionalized graphene nanosheet. Environ Monit Assess 186:7245–7257

    Article  CAS  Google Scholar 

  15. Samonin VV, Nikonova VY, Spiridonova EA (2007) The influence of the preliminary adsorption of water on the adsorption of organic solvent vapors on fullerene materials. Russ J Phys Chem A 81:1271–1275

    Article  CAS  Google Scholar 

  16. Pandyan RK, Seenithurai S, Mahendran M (2012) Carbon monoxide adsorption on transition element-doped single wall carbon nanotube. Indian J Phys 86:677–680

    Article  Google Scholar 

  17. Vinu A, Hartmann M (2005) Characterization and microporosity analysis of mesoporous carbon molecular sieves by nitrogen and organics adsorption. Catal Today 102–103:189–196

    Article  Google Scholar 

  18. Vinu A, Hossian KZ, Srinivasu P (2007) Carboxy-mesoporous carbon and its excellent adsorption capability for proteins. J Mater Chem 17:1819–1825

    Article  CAS  Google Scholar 

  19. Haque E, Khan NA, Talapaneni SN (2010) Adsorption of phenol on mesoporous carbon CMK-3: effect of textural properties. Bull Korean Chem Soc 31:1638–1642

    Article  CAS  Google Scholar 

  20. Wu Z, Webley PA, Zhao D (2010) Comprehensive study of pore evolution, mesostructural stability, and simultaneous surface functionalization of ordered mesoporous carbon (FDU-15) by wet oxidation as a promising adsorbent. Langmuir 26:10277–10286

    Article  CAS  Google Scholar 

  21. Yue L, Smart NG, Chien W (1995) Supercritical fluid extraction of uranium and thorium from nitric acid solutions with organophosphorus reagents. Environ Sci Technol 29:2706–2708

    Article  Google Scholar 

  22. Brian TH, Christopher FB, Thang D, Andreas S (1999) Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem Mater 11:795–805

    Article  Google Scholar 

  23. Yu X, Liu Y, Zhou Z, Xiong G, Cao X, Li M, Zhang Z (2014) Adsorptive removal of U(VI) from aqueous solution by hydrothermal carbon spheres with phosphate group. J Radioanal Nucl Chem 300:1235–1244

    Article  CAS  Google Scholar 

  24. Lee J-S, Joo SH, Ryoo R (2002) Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J Am Chem Soc 124:1156–1157

    Article  CAS  Google Scholar 

  25. Vinu A, Hossain KZ, Kumar SG, Ariga K (2006) Adsorption of l-histidine over mesoporous carbon molecular sieves. Carbon 44:530–536

    Article  CAS  Google Scholar 

  26. Barrett EP, Joyner L, Halenda P (1952) Granular adsorbents for sugar refining. Some factors affecting porosity and activity in service. Ind Eng Chem 44:1827–1833

    Article  CAS  Google Scholar 

  27. Nie B, Zhang Z, Cao X, Liu Y, Liang P (2013) Sorption study of uranium from aqueous solution on ordered mesoporous carbon CMK-3. J Radioanal Nucl Chem 295:663–670

    Article  CAS  Google Scholar 

  28. Zhang F, Meng Y, Gu D, Yu C, Tu B, Zhao D (2005) A facile aqueous route to synthesize highly ordered mesoporous polymers and carbon frameworks with Ia3d bicontinuous cubic structure. J Am Chem Soc 127:13508–13509

    Article  CAS  Google Scholar 

  29. Eitan A, Jiang K, Dukes D, Andrews R, Schadler LS (2003) Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem Mater 16:3198–3201

    Article  Google Scholar 

  30. Wang Y, Zhang Z, Liu Y, Cao X, Liu Y, Li Q (2012) Adsorption of U(VI) from aqueous solution by the carboxyl-mesoporous carbon. Chem Eng J 198–199:246–253

    Article  Google Scholar 

  31. Ghaemi A, Torab-Mostaedi M, Ghannadi-Maragheh M (2011) Characterizations of strontium (II) and barium (II) adsorption from aqueous solutions using dolomite powder. J Hazard Mater 190:916–921

    Article  CAS  Google Scholar 

  32. Psareva T, Zakutevskyy O, Chubar N, Strelko V, Shaposhnikova T, Carvalho JR, Correia M (2005) Uranium sorption on cork biomass. Colloids Surf A 252:231–236

    Article  CAS  Google Scholar 

  33. Anirudhan T, Radhakrishnan P (2009) Improved performance of a biomaterial-based cation exchanger for the adsorption of uranium(VI) from water and nuclear industry wastewater. J Environ Radioact 100:250–257

    Article  CAS  Google Scholar 

  34. Hazer O, Kartal S (2010) Use of amidoximated hydrogel for removal and recovery of U(VI) ion from water samples. Talanta 82:1974–1979

    Article  CAS  Google Scholar 

  35. Jaroniec M (1977) Adsorption of gas mixtures on heterogeneous solid surfaces II. Adsorption isotherms for gaseous mixtures whose pure-gas isotherms show the Freundlich, Tóth and Langmuir behaviours. Colloid Polym Sci 255:32–34

    Article  CAS  Google Scholar 

  36. Fuertes Antonio B (2001) Preparation and characterization of adsorption-selective carbon membranes for gas separation. Adsorption 7:117–129

    Article  CAS  Google Scholar 

  37. Anirudhan T, Divya L, Suchithra P (2009) Kinetic and equilibrium characterization of uranium (VI) adsorption onto carboxylate-functionalized poly (hydroxyethylmethacrylate)-grafted lignocellulosics. J Environ Manage 90:549–560

    Article  CAS  Google Scholar 

  38. Zhang Z, Yu X, Cao X, Hua R, Li M, Liu Y (2014) Adsorption of U(VI) from aqueous solution by sulfonated ordered mesoporous carbon. J Radioanal Nucl Chem 301:821–830

    Article  CAS  Google Scholar 

  39. Liu Y, Wang Y, Zhang Z, Cao X, Nie W, Li Q, Hua R (2013) Removal of uranium from aqueous solution by a low cost and high-efficient adsorbent. Appl Surf Sci 273:68–74

    Article  CAS  Google Scholar 

  40. Liu Y, Cao X, Hua R, Wang Y, Liu Y, Pang C, Wang Y (2010) Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy 02:150–155

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by National Key Basic Research Development Program (973 Program) Project of China (Grant No. 2014CB460604), National Natural Science Foundation of China (Grant Nos. 21101024, 21201033, 21301028), National Undergraduate Training Programs for Innovation and Entrepreneurship (Grant No. 201210405006), Key Project of Chinese Ministry of Education (Grant No. 211086), the Young Scientists Training Program of Jiangxi Province (Grant No. 20122BCB23023), Natural Science Foundation of Jiangxi Province (Grant Nos. 20114BAB203002, 20122BAB203012, 20132BAB203027), China Postdoctoral Science Foundation (Grant No. 20110490857), and Project of Jiangxi Provincial Department of Education (Grant No. GJJ13452) and Open Project Foundation of Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (East China Institute of Technology) (Grant No. RGET1311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, YD., Cao, XH., Luo, XP. et al. Recycle of U(VI) from aqueous solution by situ phosphorylation mesoporous carbon. J Radioanal Nucl Chem 306, 515–525 (2015). https://doi.org/10.1007/s10967-015-4133-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4133-2

Keywords

Navigation