Skip to main content
Log in

Improved Physico-chemical Properties of Mesoporous Carbon by Functionalization with Aminopropyl-polydimethylsiloxane (AP-PDMS)

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The present research reports on the synthesis and properties of mesoporous carbon (MC) surface with functionalized aminopropyl-polydimethylsiloxane (AP-PDMS). The aim of MC surface modification was focused on the improvement of its electrical properties (EC electric conductivity), as well as its sorption capacity for cesium ions. In order to anchor AP-PDMS molecules, an intermediate functionalization step of the MC surface with carboxylic groups was carried out. In this respect, two different methods, namely: (i) sonication in the presence of the hydrogen peroxide (MC-COOH) and (ii) gas-plasma activation (MCA) have been considered for carbon surface oxidation. Further, AP-PDMS component was crosslinked to the COOH-reached carbon surface. Fourier transform infrared spectroscopy (FT-IR) and energy dispersion spectroscopy (EDX) were used to confirm the presence of AP-PDMS molecules on MC surface. Morphological and textural properties of the obtained composites have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption measurements, as well as their electrical properties (EC). The obtained results reveal the grafting of silane-containing component onto MC surface, an improved electrical conductivity of the synthesized composites toward MC sample. Also, the functionalization proved to be efficient in the sorption process of the cesium ions from aqueous solutions, despite the fact that the materials surface became hydrophobic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Vinu, M. Masahiko, T. Mori, K. Ariga, J. Porous Mater. 13, 379–383 (2006)

    Article  CAS  Google Scholar 

  2. C. Liang, Z. Li, S. Dai, Angew. Chem. Int. Ed. 47, 3696–3717 (2008)

    Article  CAS  Google Scholar 

  3. A. Vinu, K.Z. Hossian, P. Srinivasu, M. Miyahara, S. Anandan, N. Gokulakrishnan, T. Mori, K. Ariga, V.V. Balasubramanian, J. Mater. Chem. 17, 1807–1819 (2007)

    Article  Google Scholar 

  4. S.A. Johnson, P.J. Ollivier, T.E. Mallouk, Science 283, 963–965 (1999)

    Article  CAS  Google Scholar 

  5. J. Chojnowski, in Siloxane Polymers, ed. by S.J. Clarson, J.A. Semylen (Prentice Hall, Englewood Cliffs, 1993), p. 1

    Google Scholar 

  6. V. Harabagiu, M. Pinteala, B.C. Simionescu, in Encyclopedia of Polymeric Materials, ed. by J.C. Salamone (CRC Press, Boca Raton, 1996), pp. 7751–7759

    Google Scholar 

  7. S.G. Gunasekaran, K. Rajakumar, M. Alagar, M. Dharmendirakumar, J. Polym. Res. 21, 342 (2014)

    Article  Google Scholar 

  8. X.R. Li, G.Q. Fei, H.H. Wang, J. Appl. Polym. Sci. 100, 40–46 (2006)

    Article  CAS  Google Scholar 

  9. I. Sierra, D.P. Quintanilla, Chem. Soc. Rev. 42, 3792–3807 (2013)

    Article  CAS  Google Scholar 

  10. G. Mohammadnezhad, M. Dinari, R. Soltani, Z. Bozorgmehr, Appl. Surf. Sci. 346, 182–188 (2015)

    Article  CAS  Google Scholar 

  11. J.Y. Kim, S.B. Yoon, F. Kooli, J.S. Yu, J. Mater. Chem. 1, 2912–2914 (2001)

    Article  Google Scholar 

  12. H.K. Lee, J.W. Choi, W. Oh, S.J. Choi, J. Radioanal. Nucl. Chem. 309, 477–484 (2016)

    CAS  Google Scholar 

  13. X.J. Liu, H.Q. Li, X.Y. Lin, H.Y. Liu, G.H. Gao, Coll. Surf. A 482, 491–499 (2015)

    Article  CAS  Google Scholar 

  14. M. Ignat, C.J. Van Oers, J. Vernimmen, M. Mertens, S. Potgieter-Vermaak, V. Meynen, E. Popovici, P. Cool, Carbon 48, 1609–1618 (2010)

    Article  CAS  Google Scholar 

  15. E. Kalaycioglu, L. Tofare, Y. Yagci, V. Harabagiu, M. Pinteala, R. Ardeleanu, B.C. Simionescu, Synth. Mat. 97, 7–12 (1998)

    Article  CAS  Google Scholar 

  16. E.P. Barrett, L.G. Joyner, P.H. Halenda, J. Am. Chem. Soc. 73, 373–380 (1951)

    Article  CAS  Google Scholar 

  17. J.L. Foschiera, T.M. Pizzolato, E.V. Benvenutti, J. Braz. Chem. Soc. 12, 159–164 (2001)

    Article  CAS  Google Scholar 

  18. Q. Ran, B. Li, D. Sun, H. Yin, Y. Wan, C. Yang, Y. Liu, Y. Mao, J. Vinyl Addit. Tech. 23, 305–311 (2015). https://doi.org/10.1002/vnl.21506

    Article  CAS  Google Scholar 

  19. R.M. Silverstein, F.X. Webster, D.J. Kiemle, Spectrometric Identification of Organic Compounds, 7th edn. (Wiley, New York, 2005)

    Google Scholar 

  20. E.L. Warrick, J. Polymer Sci. 27, 9 (1958)

    Article  Google Scholar 

  21. M.D. Migahed, T. Fahmy, Polymer 35, 1688–1693 (1994)

    Article  Google Scholar 

  22. S. Bronnikov, A. Podshivalov, S. Kostromin, M. Asandulesa, V. Cozan, Phys. Lett. A 381, 796–800 (2017)

    Article  CAS  Google Scholar 

  23. IUPAC Recommendations, Pure Appl. Chem. 66, 1739 (1994)

    Article  Google Scholar 

  24. F. Rouquerol, J. Rouquerol, K. Sing, Vak. Forsch. Prax. 11, 191 (1999)

    Google Scholar 

  25. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 9–10 (2015)

    Article  Google Scholar 

  26. J. Rouquerol, F. Rouquerol, P. Llewellyn, G. Maurin, K.S.W. Sing, Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, 2nd edn. (Academic Press, Cambridge, 2013) pp. 2–24

    Google Scholar 

  27. S. Luo, X. Xu, G. Zhou, C. Liu, Y. Tang, Y. Liu, J. Hazard. Mater. 274, 145–155 (2014)

    Article  CAS  Google Scholar 

  28. K.Y. Foo, B.H. Hameed, Chem. Eng. J. 156, 2–10 (2010)

    Article  CAS  Google Scholar 

  29. N. Ayawei, A.N. Ebelegi, D. Wankasi, J. Chem. 1–11 (2017)

  30. V. Zelentsov, T. Datsko, E. Dvornikova, Romai J. 8, 209–215 (2012)

    Google Scholar 

  31. S.M. Husnain, W. Um, Y.Y. Chang, Y.S. Chang, Chem. Eng. J. 308, 798–808 (2017)

    Article  CAS  Google Scholar 

  32. A. Mata, A.J. Fleischman, S. Roy, Biomed. Microdev. 7, 281–293 (2005)

    Article  CAS  Google Scholar 

  33. S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, J. Microelectromech. Syst. 14, 590–597 (2005)

    Article  CAS  Google Scholar 

  34. E.J. Park, Y.K. Cho, D.H. Kim, M.G. Jeong, Y.H. Kim, Y.D. Kim, Langmuir 30, 10256–10262 (2014)

    Article  CAS  Google Scholar 

  35. S.J. Choi, T.H. Kwon, H. Im, D.I. Moon, D.J. Baek, M.L. Seol, J.P. Duarte, Y.K. Choi, Appl. Mater. Interfaces 3, 4552–4556 (2011)

    Article  CAS  Google Scholar 

  36. W.D. Kaplan, D. Chatain, P. Wynblatt, W.C. Carter, J. Mater. Sci. 48, 5681–5717 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thanks the PN-III-P1.2-PCCDI-2017-0194 project for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ignat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPG 547 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fortună, M.E., Ignat, M., Asandulesa, M. et al. Improved Physico-chemical Properties of Mesoporous Carbon by Functionalization with Aminopropyl-polydimethylsiloxane (AP-PDMS). J Inorg Organomet Polym 28, 2275–2287 (2018). https://doi.org/10.1007/s10904-018-0884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0884-x

Keywords

Navigation