Skip to main content
Log in

A Prototype of Ducted-Fan Aerial Robot with Redundant Control Surfaces

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This work presents the aero-mechanical characteristics and the control design for a prototype of ducted-fan aerial robot tailored to achieve advanced robotics operations requiring physical interaction with the environment and high maneuverability. The distinguishing feature of the proposed aerial configuration is the redundant number of aerodynamic surfaces which can be employed by the controller. A control strategy is then proposed in which control allocation techniques exploit this redundancy to improve the accuracy and the efficiency of the aerodynamic forces and torques generation mechanism while simplifying the overall feedback design. The effectiveness of the proposed approach and the performances of the ducted-fan prototype have been demonstrated by means of flight experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airobots project website. http://www.airobots.eu.

  2. Airobots videos. http://www.youtube.com/user/AIRobots.

  3. ATI force / torque sensor. http://www.ati-ia.com/products/ft/ft_models.aspx?id=Gamma (2013)Accessed 30 July 2013

  4. Albers, A., Trautmann, S., Howard, T., Nguyen, T.A., Frietsch, M., Sauter, C.: Semi-autonomous flying robot for physical interaction with environment. In: Proceedings of the IEEE Conference on Robotics Automation and Mechatronics (RAM). pp. 441–446. Singapore (2010)

  5. Bordignon, K.A.: Constrained Control Allocation for Systems with Redundant Control Effectors. PhD, Thesis, Virginia Polytechnic Institute and State University (1996)

  6. Casavola, A., Garone, E.: Adaptive fault tolerant actuator allocation for overactuated plants. In: Proceedings of the 2007 American Control Conference. New York (2007)

  7. Forte, F., Naldi, R., Macchelli, A., Marconi, L.: Impedance control of an aerial manipulator. In: Proceedings of the 2012 American Control Conference, Montreal (2012)

  8. Frazzoli, E., Dahleh, M., Feron, E.: Trajectory tracking control design for autonomous helicopters using a backstepping algorithm. In: Proceedings of the American Control Conference, pp. 4102–4107 (2000)

  9. Härkegård, O.: In: Backstepping and Control Allocation with Applications to Flight Control. PhD. Thesis, Department of Electrical Engineering, Linkping University (2003)

  10. Hauser, J., Sastry, S., Meyer, G.: Nonlinear control design for slightly non-minimum phase systems: application to v/stol aircraft. Autom. 28(4), 665–679 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hua, M.D., Hamel, T., Morin, P., Samson, C.: A control approach for thrust-propelled underactuated vehicles and its applications to VTOL drones. IEEE Trans. Autom. Control 54(8), 1837–1853 (2009)

    Article  MathSciNet  Google Scholar 

  12. Huerzeler, C., Caprari, G., Zwicker, E., Marconi, L.: Benchmarking aerial robots for inspection of power and petrochemical facilities. In: Proceedings of the International Conference on Applied Robotics for the Power Industry (CARPI). Zurich, SW (2012)

  13. Ohanian III, O.J., Gelhausen, P.A., Inman, J.: A compact method for modeling the aerodynamics of ducted fan vehicles. In: Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, Florida (2010)

  14. Isidori, A., Marconi, L., Serrani, A.: Robust Autonomous Guidance: An Internal Model Approach. Advances in Industrial Control, Springer-Verlag, London (2003)

    Google Scholar 

  15. Johnson, E.N., Turbe, M.A.: Modeling, control, and flight testing of a small ducted fan aircraft. AIAA J. Guid. Control. Dyn. 29, 769–779 (2006)

    Article  Google Scholar 

  16. Keemink, A.Q.L., Fumagalli, M., Stramigioli, S., Carloni, R.: Mechanical design of a manipulation-system for unmanned aerial vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation (2012)

  17. Korpela, C., Danko, T., Paul, O.: MM-UAV: Mobile manipulating unmanned aerial vehicle. J. Intell. Robot. Syst., 1–9 (2011)

  18. Marconi, L., Naldi, R.: Control of aerial robots: Hybrid force and position feedback for a ducted fan. IEEE Control. Syst. Mag. 4, 43–65 (2012)

    Article  MathSciNet  Google Scholar 

  19. Marconi, L., Naldi, R., Gentili, L.: Modeling and control of a flying robot interacting with the environment. Autom. 47(12), 2571–2583 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Martin, P., Devasia, S., Paden, B.: A different look at output tracking: Control of a vtol aircraft. Autom. 32(1), 101–107 (1996)

    Article  MATH  Google Scholar 

  21. Mellinger, D., Shomin, M., Michael, N., Kumar, V.: Cooperative grasping and transport using multiple quadrotors. In: Proceedings of the International Symposium on Distributed Autonomous Systems. Lausanne, Switzerland (2010)

  22. Naldi, R., Furci, M., Sanfelice, R.G., Marconi, L.: Global trajectory tracking for underactuated VTOL aerial vehicles using cascade control paradigms. In 2013 IEEE Conference on Decision and Control, Florence. (2013)

  23. Naldi, R., Gentili, L., Marconi, L., Sala, A.: Design and experimental validation of a nonlinear control law for a ducted-fan miniature aerial vehicle. Control. Eng. Pract. 18(7), 747–760 (2010)

    Article  Google Scholar 

  24. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. In: Ph.D. Thesis. Massachusetts Institute Of Technology (2001)

  25. Pflimlin, J., Soueres, P., Hamel, T.: Position control of a ducted fan vtol uav in crosswind. Int. J. Control 80(5), 666–683 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Natural Point. http://www.naturalpoint.com/optitrack.

  27. Pounds, P., Bersak, D.R., Dollar, A.M.: Grasping from the air: Hovering capture and load stability. In: Proceedings of the IEEE International Conference on Robotics and Automation (2011)

  28. Pounds, P., Dollar, A.M.: UAV rotorcraft in compliant contact: Stability analysis and simulation. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. (2011)

  29. Roberts, A., Tayebi, A.: Adaptive position tracking of VTOL UAVs. Robotics IEEE Transactions 27(1), 129–142 (2011)

    Article  Google Scholar 

  30. Sheldahl, R.E., Kilmas, P.C.: Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. Sandia National Laboratories Energy Report (1981)

  31. Stengel, R.F.: Flight Dynamics. Princeton University Press (2004)

  32. Thwaites, B.: Incompressible Aerodynamics. Oxford University Press (1960)

  33. Zhao, M.W., Bill, C.: Aerodynamic design and analysis of a VTOL ducted-fan UAV. In: Proceeding of the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Naldi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naldi, R., Marconi, L. A Prototype of Ducted-Fan Aerial Robot with Redundant Control Surfaces. J Intell Robot Syst 76, 137–150 (2014). https://doi.org/10.1007/s10846-013-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-013-0001-x

Keywords

Navigation