Skip to main content
Log in

Electrogeneration of hydrogen peroxide in seawater and application to disinfection

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The cathodic electrogeneration of hydrogen peroxide in seawater by means of oxygen reduction on a gas diffusion cathode was studied. The effects on the reaction yield of several operative parameters such as cell design, medium composition, anolyte concentration, pH and working potential were investigated. Results indicate that in a two-compartment cell notable concentrations of hydrogen peroxide are obtained with a constant yield in a wide range of charge. Lower catholyte pH values, obtainable by means of the anolyte choice, mitigate the decrease in the efficiency due to cathode fouling. Application of hydrogen peroxide electrogeneration to seawater disinfection was also tested. Comparative tests conducted using both commercial and electrogenerated hydrogen peroxide, either alone or combined with iron in Fenton’s treatment, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Biryukov AS, Gavrikov VF, Nikiforova LO, Shcheglov VA (2005) J Russ Laser Res 26:13

    Article  Google Scholar 

  2. McGuigan KG, Joyce TM, Conroy RM, Gillespie JB, Elmore-Meegan M (1998) J Appl Microbiol 84:1138

    Article  CAS  Google Scholar 

  3. Huang J, Wang L, Ren N, Ma F, Ma J (1997) Water Res 31:607

    Article  CAS  Google Scholar 

  4. White GC (1999) Handbook of chlorination and alternative disinfectants, 4th edn. Wiley, New York

  5. von Gunten U (2003) Water Res 37:1443

    Article  Google Scholar 

  6. von Gunten U (2003) Water Res 37:1469

    Article  Google Scholar 

  7. Gibbons J, Laha S (1999) Environ Pollut 106:425

    Article  CAS  Google Scholar 

  8. Cedergren MI, Selbing AJ, Löfman O, Källen BA (2002) J Environ Res A 89:124

    Article  CAS  Google Scholar 

  9. Sadiq R, Rodriguez MJ (2004) Sci Total Environ 321:21

    Article  CAS  Google Scholar 

  10. Jyoti KK, Pandit AB (2004) Biochem Eng J 18:9

    Article  CAS  Google Scholar 

  11. Arnal JM, Sancho M, Verdr G, Lora J, Marin JF, Chiller J (2004) Desalination 168:265

    Article  CAS  Google Scholar 

  12. Blanc DS, Zanetti G, Francioli P, Carrara P (2005) J Hosp Infect 60:69

    Article  CAS  Google Scholar 

  13. Jyoti KK, Pandit AB (2004) Water Res 38:2248

    Article  CAS  Google Scholar 

  14. Sökmen M, Candan F, Sümer Z (2001) J Photochem Photobiol A 143:241

    Article  Google Scholar 

  15. Chen G (2004) Sep Purif Technol 38:11

    Article  Google Scholar 

  16. Feng C, Suzuki K, Zhao S, Sugiura N, Shimada S, Maekawa T (2004) Bioresour Technol 94:21

    Article  CAS  Google Scholar 

  17. Polcaro AM, Vacca A, Mascia M, Palmas S, Pompei R, Laconi S (2007) Electrochim Acta 52:2595

    Article  CAS  Google Scholar 

  18. Silva SM, Alvarez GA, Martìnez E (2004) Int J Hydrogen Energy 29:921

    Article  Google Scholar 

  19. Kraft A, Stadelmann M, Blaschke M, Kreysig D, Sandt B, Schröder F, Rennau J (1999) J Appl Electrochem 29:861

    CAS  Google Scholar 

  20. Drougi P, Elmaleh S, Rumeau M, Bernard C, Rambaud A (2001) Water Res 35:3235

    Article  Google Scholar 

  21. Alvarez GA, Pletcher D (1998) Electrochim Acta 44:853

    Article  Google Scholar 

  22. Brillas E, Alcaide F, Cabot PL (2002) Electrochim Acta 48:331

    Article  CAS  Google Scholar 

  23. Qiang Z, Chang JH, Huang CP (2002) Water Res 36:85

    Article  CAS  Google Scholar 

  24. Guillet N, Roué L, Marcotte S, Villers D, Dodelet JP, Chhim N, Tré Vin S (2006) J Appl Electrochem 36:863

    Article  CAS  Google Scholar 

  25. Alcaide F, Brillas E, Cabot PL (2002) J Electrochem Soc 149:E64

    Article  CAS  Google Scholar 

  26. Harrington T, Pletcher D (1999) J Electrochem Soc 146:2983

    Article  CAS  Google Scholar 

  27. Da Pozzo A, Palma LD, Merli C, Petrucci E (2005) J Appl Electrochem 35:413

    Article  CAS  Google Scholar 

  28. Oemcke DJ, van Leeuwen JH (2005) Water Res 39:5119

    Article  CAS  Google Scholar 

  29. Kuzirian AM, Terry ECS, Bechtel DL, James PL (2001) Biol Bull 201:297

    Article  CAS  Google Scholar 

  30. Da Pozzo A, Ferrantelli P, Merli C, Petrucci E (2005) J Appl Electrochem 35:391

    Article  Google Scholar 

  31. Brillas E, Casado J (2002) Chemosphere 47:241

    Article  CAS  Google Scholar 

  32. Kurt U, Avsar Y, Gonullu MT (2006) Chemosphere 64:1536

    Article  CAS  Google Scholar 

  33. Boye B, Brillas E, Buso A, Farnia G, Flox C, Giomo M et al (2006) Electrochim Acta 52:256

    Article  CAS  Google Scholar 

  34. Maciel R, Sant’Anna GL Jr, Dezotti M (2004) Chemosphere 57:711

    Article  CAS  Google Scholar 

  35. Gosser LW, Schwartz JT (1989) US Patent US4832938

  36. Berzins T, Gosser LW (1992) US patent US5112702

  37. Sudoh M, Kitaguchi H, Koide K (1985) J Chem Eng Japan 18:409

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank “De Nora Tecnologie Elettrochimiche” for their valuable collaboration and the materials supplied.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Petrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Da Pozzo, A., Petrucci, E. & Merli, C. Electrogeneration of hydrogen peroxide in seawater and application to disinfection. J Appl Electrochem 38, 997–1003 (2008). https://doi.org/10.1007/s10800-008-9524-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9524-4

Keywords

Navigation