Skip to main content
Log in

Oxidation efficiency in the electro-Fenton process

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electro-Fenton treatment of a solution containing phosphorus compounds using a graphite electrode is described. Different operating conditions are tested to investigate the influence of the reagent ratio on the oxidative efficiency. Results show that electro-Fenton’s reagent is able to provide a powerful conversion of the phosphorous compounds into phosphate. As hydrogen peroxide is continuously provided by the cathodic reduction of oxygen, the crucial step appears to be the iron dosage whose optimal concentration is found in the range 50–150 mg l−1. Quantitative oxidation is not reached for concentration lower than 50 mg l−1. Nonetheless, an excess of both iron and hydrogen peroxide in the bulk is found to negatively affect the oxidation yield because of the occurrence of undesired side reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Rajeshwar J. Ibanez (1997) Environmental Electrochemistry Academic Press New York

    Google Scholar 

  2. K. Juttner U. Galla H. Schmieder (2000) Electrochim. Acta 45 2575

    Google Scholar 

  3. O.J. Murphy G.D. Hitchens L. Kaba C.E. Verostko (1991) Water Res. 26 IssueID4 443

    Google Scholar 

  4. A.M. Polcaro A. Vacca S. Palmas M. Mascia (2003) J. Appl. Electrochem. 33 885

    Google Scholar 

  5. C.A. Ragnini W. Bizzo R. Bertazzoli (2000) Water Res. 34 3269

    Google Scholar 

  6. T. Bechtold C. Mader J. Mader (2002) J. Appl. Electrochem. 32 943

    Google Scholar 

  7. Q. Wang A. Lemley (2002) Water Res. 36 IssueID13 3237

    Google Scholar 

  8. H.J.H. Fenton (1894) J. Chem. Soc. 65 899

    Google Scholar 

  9. L. Di Palma P. Ferrantelli E. Petrucci (2003) J. Hazard. Mater. B 99 265

    Google Scholar 

  10. A. Goi M. Trapido (2002) Chemosphere 46 913

    Google Scholar 

  11. Y.W. Kang K.Y. Hwang (2000) Water Res. 34 IssueID10 2786

    Google Scholar 

  12. E. Neyens J. Baeyens (2003) J. Hazard. Mater. B 98 33

    Google Scholar 

  13. E. Petrucci L. Di Palma C. Merli (2003) Ann. Chim.-Rome 93/11 935

    Google Scholar 

  14. A.M. Scott W.J. Hickey R.F. Harris (1995) Environ. Sci. Technol. 29 2083

    Google Scholar 

  15. A. Alvarez-Gallegos D. Pletcher (1998) Electrochim. Acta 44 2483

    Google Scholar 

  16. B. Boye M.M. Dieng E. Brillas (2002) Environ. Sci. Technol. 36 3030

    Google Scholar 

  17. B. Boye M.M. Dieng E. Brillas (2003) J. Electroanal. Chem. 557 135

    Google Scholar 

  18. E. Brillas R. Sauleda J. Casado (1998) J. Electrochem. Soc. 145 759

    Google Scholar 

  19. E. Brillas M.A. Baños S. Camps C. Arias P.L. Cabot J.A. Garrido R.M. Rodriguez (2004) New J. Chem. 28 314

    Google Scholar 

  20. E. Brillas B. Boye M.M. Dieng (2003) J. Electrochem. Soc. 150 E583

    Google Scholar 

  21. I. Casero D. Sicilia S. Rubio D. Pérez-Bendito (1997) Water Res. 31 IssueID8 1985

    Google Scholar 

  22. S. Chou Y.H. Huang S.N. Lee G.H. Huang C. Huang (1999) Water Res. 33 IssueID3 751

    Google Scholar 

  23. A. Da Pozzo L. Di Palma P. Ferrantelli C. Merli E. Petrucci (2003) Ann. Chim.-Rome 94/12 1500

    Google Scholar 

  24. J.S. Do P. Chen (1994) J. Appl. Electrochem. 24 936

    Google Scholar 

  25. B. Gomez M.A. Oturan N. Oturan O. Erbatur (2003) Environ. Sci. Technol. 37 3716

    Google Scholar 

  26. Y.L. Hsiao K. Nobe (1993) J. Appl. Electrochem. 23 943

    Google Scholar 

  27. Y.L. Hsiao K. Nobe (1993) Chem. Eng. Commun. 126 97

    Google Scholar 

  28. N.R. Mohanty I.W. Wei (1993) Hazard. Waste Hazard. Mater. 10 IssueID2 171

    Google Scholar 

  29. M.A. Oturan N. Oturan C. Lahitte S. Trevin (2001) J. Electroanal. Chem. 507 96

    Google Scholar 

  30. M.A. Oturan J. Peiroten P. Chartrin A.J. Acher (2000) Environ. Sci. Technol. 34 3474

    Google Scholar 

  31. K. Pratap A.T. Lemley (1998) J. Agric. Food Chem. 46 3285

    Google Scholar 

  32. C. Pulgarin N. Adler P. Peringer C. Comninellis (1994) Water Res. 28 887

    Google Scholar 

  33. M. Sudoh T. Kodera K. Sakai J.Q. Zhang K. Koide (1986) J. Chem. Eng. Jpn. 19 IssueID6 513

    Google Scholar 

  34. R. Tomat A. Rigo (1984) J. Appl. Electrochem. 14 1

    Google Scholar 

  35. A. Ventura G. Jacquet A. Bermond V. Camel (2002) Water Res. 36 3517

    Google Scholar 

  36. Y.-h. Huang S. Chou M.-G. Perng G.-H. Huang S.-S. Cheng (1999) Water Sci. Technol. 39 IssueID10–11 145

    Google Scholar 

  37. G. Marrosu R. Petrucci A. Trazza (2001) Ann. Chim.-Rome 91 175

    Google Scholar 

  38. APHA, AWWA, WPCF, ‘Standard Method for the Examination of Water and Wastewater’, 19th ed. (Baltimore, MA, 1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Petrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozza, A.d., Ferrantelli, P., Merli, C. et al. Oxidation efficiency in the electro-Fenton process. J Appl Electrochem 35, 391–398 (2005). https://doi.org/10.1007/s10800-005-0801-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-0801-1

Key words:

Navigation