Skip to main content

Advertisement

Log in

Thermophysical Properties of a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden® HT 55 (Perfluoropolyether)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

This work presents a comprehensive experimental study of various thermophysical properties of an azeotropic refrigerant mixture of 65 mass% R365mfc (1,1,1,3,3-pentafluorobutane) and 35 mass% Galden® HT 55 (perfluoropolyether). Light scattering from bulk fluids has been applied for measuring both the thermal diffusivity and the speed of sound in the liquid and vapor phases under saturation conditions, between 293 K and the liquid–vapor critical point at 450.7 K. Furthermore, the speed of sound has been measured for the superheated-vapor phase along nine isotherms, between 393 and 523 K and up to a maximum pressure of about 2.5 MPa. For temperatures between 253 and 413 K, light scattering by surface waves on a horizontal liquid–vapor interface has been used for simultaneous determination of the surface tension and kinematic viscosity of the liquid phase. With light scattering techniques, uncertainties of less than ±2.0%, ±0.5%, ±1.5%, and ±1.5% have been achieved for the thermal diffusivity, sound speed, kinematic viscosity, and surface tension, respectively. In addition to vapor-pressure measurements between 304 and 448 K, the density was measured between 273 and 443 K using a vibrating-tube method. Here, measurements have been performed in the compressed- and saturated-liquid phases with uncertainties of ±0.3% and ±0.1%, respectively, as well as for the superheated vapor up to a maximum pressure of about 3 MPa with an uncertainty between ±0.3% and ±3%. Critical-point parameters were derived by combining the data obtained by different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. REFPROP Standard Reference Database 23, Version 7.1 (Nat. Inst. Stds. Technol., Gaithersburg, MD, 2003).

  2. B.J. Berne and R. Pecora, Dynamic Light Scattering (Robert E. Krieger, Malabar, 1990).

    Google Scholar 

  3. B. Chu, Laser Light Scattering (Academic Press, New York, 1991).

    Google Scholar 

  4. J. N. Shaumeyer, R. W. Gammon, and J. V. Sengers, in Measurement of the Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991), pp. 197–213.

  5. A. Leipertz and A. P. Fröba, in Diffusion in Condensed Matter – Methods, Materials, Models, P. Heitjans and J. Kärger, eds. (Springer, Berlin, 2005), pp. 583–622.

  6. Bardow A. (2007) . Fluid Phase Equilib. 251:121

    Article  Google Scholar 

  7. Wu G., Fiebig M., Leipertz A. (1988) . Int. J. Heat Mass Transfer 31:1471

    Article  Google Scholar 

  8. Leipertz A. (1992) . Chem. Ing. Tech. 64:17

    Article  Google Scholar 

  9. Will S., Fröba A.P., Leipertz A. (1998) . Int. J. Thermophys. 19:403

    Article  Google Scholar 

  10. Fröba A.P., Will S., Leipertz A. (1999) . Fluid Phase Equilib. 161:337

    Article  Google Scholar 

  11. D. Langevin, Light Scattering by Liquid Surfaces and Complementary Techniques (Marcel Dekker, New York, 1992).

    Google Scholar 

  12. A. P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Ober-flächenlichtstreuung, Dr.-Ing. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2002).

  13. Lucassen-Reynders E.H., Lucassen J. (1969) . Adv. Colloid Interface Sci. 2:347

    Article  Google Scholar 

  14. Fröba A.P., Leipertz A. (2003) . Int. J. Thermophys. 24:895

    Article  Google Scholar 

  15. Marrucho I.M., Oliveira N.S., Dohrn R. (2002) . J. Chem. Eng. Data 47:554

    Article  Google Scholar 

  16. Fröba A.P., Krzeminski K., Leipertz A. (2004) . Int. J. Thermophys. 25:987

    Article  Google Scholar 

  17. W. Wagner, Eine mathematisch statistische Methode zum Aufstellen thermodynamischer Gleichungen - gezeigt am Beispiel der Dampfdruckkurve reiner-fluider Stoffe, Fortschrittsberichte der VDI-Zeitschrift, Reihe 3, Nr. 39 (VDI-Verlag, Düsseldorf, 1974).

  18. Pitzer K.S. (1955) . J. Am. Chem. Soc. 77:3427

    Article  Google Scholar 

  19. Pitzer K.S., Lippmann D.Z., Curl R.F., Huggins C.M., Peterson D.E. (1955) . J. Am. Chem. Soc. 77:3433

    Article  Google Scholar 

  20. Weber L.A. (1994) . Int. J. Thermophys. 15:461

    Article  Google Scholar 

  21. Liu D.X., Xiang H.W. (2003) . Int. J. Thermophys. 24:1667

    Article  Google Scholar 

  22. Xiang H.W. (2002) . Chem. Eng. Sci. 57:1439

    Article  Google Scholar 

  23. Gunn R.D., Yamada T. (1971) . AIChE J. 17:1341

    Article  Google Scholar 

  24. Chen Z.-S., Ito T. Proc. 5th Asian Thermophys. Props. Conf. (Seoul, 1998), pp. 321–323.

  25. Hu P., Chen Z.-S. (2004) . Fluid Phase Equilib. 221:7

    Article  Google Scholar 

  26. Kraft K., Lopes M.M., Leipertz A. (1995) . Int. J. Thermophys. 16:423

    Article  Google Scholar 

  27. K. G. Joback, A Unified Approach to Physical Property Estimation Using Multivariate Statistical Techniques, M.Sc. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1984.

  28. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977 and 1987).

  29. Lucas K. (1974) . Chem. Ing. Tech. 46:157

    Article  Google Scholar 

  30. Miqueu C., Broseta D., Satherley J., Mendiboure B., Lachaise J., Graciaa A. (2000) . Fluid Phase Equilib. 172:169

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Fröba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fröba, A.P., Kremer, H., Leipertz, A. et al. Thermophysical Properties of a Refrigerant Mixture of R365mfc (1,1,1,3,3-Pentafluorobutane) and Galden® HT 55 (Perfluoropolyether). Int J Thermophys 28, 449–480 (2007). https://doi.org/10.1007/s10765-007-0178-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0178-y

Keywords

Navigation