Skip to main content
Log in

Trapped antihydrogen

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Precision spectroscopic comparison of hydrogen and antihydrogen holds the promise of a sensitive test of the Charge-Parity-Time theorem and matter-antimatter equivalence. The clearest path towards realising this goal is to hold a sample of antihydrogen in an atomic trap for interrogation by electromagnetic radiation. Achieving this poses a huge experimental challenge, as state-of-the-art magnetic-minimum atom traps have well depths of only ∼1 T (∼0.5 K for ground state antihydrogen atoms). The atoms annihilate on contact with matter and must be ‘born’ inside the magnetic trap with low kinetic energies. At the ALPHA experiment, antihydrogen atoms are produced from antiprotons and positrons stored in the form of non-neutral plasmas, where the typical electrostatic potential energy per particle is on the order of electronvolts, more than 104 times the maximum trappable kinetic energy. In November 2010, ALPHA published the observation of 38 antiproton annihilations due to antihydrogen atoms that had been trapped for at least 172 ms and then released—the first instance of a purely antimatter atomic system confined for any length of time (Andresen et al., Nature 468:673, 2010). We present a description of the main components of the ALPHA traps and detectors that were key to realising this result. We discuss how the antihydrogen atoms were identified and how they were discriminated from the background processes. Since the results published in Andresen et al. (Nature 468:673, 2010), refinements in the antihydrogen production technique have allowed many more antihydrogen atoms to be trapped, and held for much longer times. We have identified antihydrogen atoms that have been trapped for at least 1,000 s in the apparatus (Andresen et al., Nature Physics 7:558, 2011). This is more than sufficient time to interrogate the atoms spectroscopically, as well as to ensure that they have relaxed to their ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andresen, G.B., et al. (ALPHA): Nature 468, 673 (2010)

    Article  ADS  Google Scholar 

  2. Andresen, G.B., et al. (ALPHA): Nature Physics 7, 558 (2011)

    Article  ADS  Google Scholar 

  3. Niering, M., et al.: Phys. Rev. Lett. 84, 5496 (2000)

    Article  ADS  Google Scholar 

  4. Hellwig, H., et al.: IEEE Trans. Instrum. Meas. IM-19, 200 (1970)

    Article  Google Scholar 

  5. Amoretti, M., et al. (ATHENA): Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  6. Gabrielse, G., et al. (ATRAP): Phys. Rev. Lett. 89, 233401 (2002)

    Article  ADS  Google Scholar 

  7. Pritchard, D.E.: Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  8. Gilson, E.P., Fajans, J.: Phys. Rev. Lett. 90, 015001 (2003)

    Article  ADS  Google Scholar 

  9. Bertsche, W., et al. (ALPHA): Nucl. Instrum. Methods Phys. Res. A 566, 746 (2006)

    Article  ADS  Google Scholar 

  10. Hydomako, R.. et al. (ALPHA): Antihydrogen detection in ALPHA. (this conference)

  11. Andresen, G.B., et al. (ALPHA): Phys. Lett. B 695, 95 (2011)

    Article  ADS  Google Scholar 

  12. Gabrielse, G., et al.: Phys. Lett. A 129, 38 (1988)

    Article  ADS  Google Scholar 

  13. Madsen, N., et al. (ATHENA): Phys. Rev. Lett. 94, 033403 (2005)

    Article  ADS  Google Scholar 

  14. Andresen, G.B., et al. (ALPHA): Phys. Rev. Lett. 106, 025002 (2011)

    Article  ADS  Google Scholar 

  15. Bertsche, W., et al. (ALPHA): Antihydrogen formation by autoresonant excitation of antiproton plasmas. (this conference)

  16. So, C., et al. (ALPHA): Autoresonant mixing simulation in the ALPHA apparatus. (this conference)

  17. Hurt, J., et al.: J. Phys. B: At. Mol. Opt. Phys. 41, 165206 (2008)

    Article  Google Scholar 

  18. Davis, K.B., et al.: Phys. Rev. Lett. 74, 5202 (1995)

    Article  ADS  Google Scholar 

  19. Andresen, G.B., et al. (ALPHA): Phys. Rev. Lett. 105, 013003 (2010)

    Article  ADS  Google Scholar 

  20. Silveria, D., et al. (ALPHA): Evaporative cooling of antiprotons and positrons for the production of trappable antihydrogen. (this conference)

  21. Ashkezari, M., et al. (ALPHA): Progress towards microwave spectroscopy of trapped antihydrogen. (this conference)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Butler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, E., Andresen, G.B., Ashkezari, M.D. et al. Trapped antihydrogen. Hyperfine Interact 212, 15–29 (2012). https://doi.org/10.1007/s10751-011-0396-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-011-0396-3

Keywords

Navigation