Skip to main content

Advertisement

Log in

Disturbance and the role of refuges in mediterranean climate streams

  • MEDITERRANEAN CLIMATE STREAMS
  • Review paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Refuges protect plant and animal populations from disturbance. Knowledge of refuges from disturbance in mediterranean climate rivers (med-rivers) has increased the last decade. We review disturbance processes and their relationship to refuges in streams in mediterranean climate regions (med-regions). Med-river fauna show high endemicity and their populations are often exposed to disturbance; hence the critical importance of refuges during (both seasonal and supraseasonal) disturbances. Disturbance pressures are increasing in med-regions, in particular from climatic change, salinisation, sedimentation, water extraction, hydropower generation, supraseasonal drought, and wildfire. Med-rivers show annual cycles of constrained precipitation and predictable seasonal drying, causing the biota to depend on seasonal refuges, in particular, those that are spatially predictable. This creates a spatial and temporal mosaic of inundation that determines habitat extent and refuge function. Refuges of sufficient size and duration to maintain populations, such as perennially flowing reaches, sustain biodiversity and may harbour relict populations, particularly during increasing aridification, where little other suitable habitat remains in landscapes. Therefore, disturbances that threaten perennial flows potentially cascade disproportionately to reduce regional scale biodiversity in med-regions. Conservation approaches for med-river systems need to conserve both refuges and refuge connectivity, reduce the impact of anthropogenic disturbances and sustain predictable, seasonal flow patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, V., I. Muñoz, A. Giorgi, M. Omella, F. Sabater & S. Sabater, 2005. Drought and post-drought recovery cycles in an intermittent Mediterranean stream: structural and functional aspects. Journal of the North American Benthological Society 24: 919–933.

    Google Scholar 

  • Anna, A., C. Yorgos, P. Konstantinos & L. Maria, 2009. Do intermittent and ephemeral Mediterranean rivers belong to the same river type? Aquatic Ecology 43: 465–476.

    Google Scholar 

  • Armstrong, D. P., 2005. Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conservation Biology 19: 1402–1410.

    Google Scholar 

  • Aschmann, H., 1973. Distribution and peculiarity of mediterranean ecosystems. In di Castri, F. & H. A. Mooney (eds), Mediterranean Type Ecosystems: Origin and Structure. Springer, Berlin: 11–19.

    Google Scholar 

  • Barinova, S. S., G. Yehuda & E. Nevo, 2010. Comparative analysis of algal communities in the rivers of northern and southern Israel as bearing on ecological consequences of climate change. Journal of Arid Environments 74: 765–776.

    Google Scholar 

  • Beatty, S. J., D. L. Morgan, F. J. McAleer & A. R. Ramsay, 2010. Groundwater contribution to baseflow maintains habitat connectivity for Tandanus bostocki (Teleostei: Plotosidae) in a south-western Australian river. Ecology of Freshwater Fish 19: 595–608.

    Google Scholar 

  • Beatty, S. J., D. L. Morgan, M. Rashnavadi & A. J. Lymbery, 2011. Salinity tolerances of endemic freshwater fishes of south-western Australia: implications for conservation in a biodiversity hot spot. Marine and Freshwater Research 62: 91–100.

    CAS  Google Scholar 

  • Beauchard, O., J. Gagneur & S. Brosse, 2003. Macroinvertebrate richness patterns in North African streams. Journal of Biogeography 30: 1821–1833.

    Google Scholar 

  • Bêche, L. A. & V. H. Resh, 2007. Short-term climatic trends affect the temporal variability of macroinvertebrates in Californian “Mediterranean” streams. Freshwater Biology 52: 2317–2339.

    Google Scholar 

  • Benejam, L., P. L. Angermeier, A. Munné & E. García-Berthou, 2010. Assessing effects of water abstraction on fish assemblages in Mediterranean streams. Freshwater Biology 55: 628–642.

    Google Scholar 

  • Berkun, M., 2010. Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey. Energy for Sustainable Development 14: 320–329.

    Google Scholar 

  • Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Google Scholar 

  • Boix, D., E. Garcia-Berthou, S. Gascon, L. Benejam, E. Tornes, J. Sala, J. Benito, A. Munné, C. Solà & S. Sabater, 2010. Response of community structure to sustained drought in Mediterranean rivers. Journal of Hydrology 383: 135–146.

    Google Scholar 

  • Bollmohr, S. & R. Schulz, 2009. Seasonal changes of macroinvertebrate communities in a western Cape River, South Africa, receiving nonpoint-source insecticide pollution. Environmental Toxicology and Chemistry 28: 809–817.

    CAS  PubMed  Google Scholar 

  • Bonada, N., M. Rieradevall, N. Prat & V. H. Resh, 2006. Benthic macroinvertebrate assemblages and macrohabitat connectivity in mediterranean-climate streams of northern California. Journal of the North American Benthological Society 25: 32–43.

    Google Scholar 

  • Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implications for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Google Scholar 

  • Bonada, N., M. Rieradevall, H. Dallas, J. Davis, J. Day, R. Figueroa, V. H. Resh & N. Prat, 2008. Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers. Freshwater Biology 53: 772–788.

    Google Scholar 

  • Boulton, A. J., C. G. Peterson, N. B. Grimm & S. G. Fisher, 1992. Stability of an aquatic macroinvertebrate community in a multiyear disturbance regime. Ecology 73: 2192–2207.

    Google Scholar 

  • Box, J. B., A. Duguid, R. E. Read, R. G. Kimber, A. Knapton, J. Davis & A. E. Bowland, 2008. Central Australian waterbodies: The importance of permanence in a desert landscape. Journal of Arid Environments 72: 1395–1413.

    Google Scholar 

  • Brainwood, M., S. Burgin & M. Byrne, 2006. Is the decline of freshwater mussel populations in a regulated coastal river in south-eastern Australia linked with human modification of habitat? Aquatic Conservation-Marine and Freshwater Ecosystems 16: 501–516.

    Google Scholar 

  • Brock, M. A., D. L. Nielsen, R. J. Shiel, J. D. Green & J. D. Langley, 2003. Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48: 1207–1218.

    Google Scholar 

  • Bunn, S. E. & P. M. Davies, 1992. Community structure of the macroinvertebrate fauna and water quality of a saline river system in south-western Australia. Hydrobiologia 248: 143–160.

    CAS  Google Scholar 

  • Bunn, S. E., D. H. Edward & N. R. Loneragan, 1986. Spatial and temporal variation in the macroinvertebrate fauna of streams of the northern jarrah forest, Western Australia: community structure. Freshwater Biology 16: 67–91.

    Google Scholar 

  • Chenoweth, J., P. Hadjinicolaou, A. Bruggeman, J. Lelieveld, Z. Levin, M. A. Lange, E. Xoplaki & M. Hadjikakou, 2011. Impact of climate change on the water resources of the eastern mediterranean and Middle East region: modelled 21st century changes and implications. Water Resources Research 47: W06506.

    Google Scholar 

  • Chessman, B. C., H. A. Jones, N. K. Searle, I. O. Growns & M. P. Pearson, 2010. Assessing effects of flow alteration on macroinvertebrate assemblages in Australian dryland rivers. Freshwater Biology 55: 1780–1800.

    Google Scholar 

  • Chester, E. T. & B. J. Robson, 2011. Drought refuges, spatial scale and the recolonization of invertebrates in non-perennial streams. Freshwater Biology 56: 2094–2104.

    Google Scholar 

  • Cortes, R. M. V., M. T. Ferreira, S. V. Oliveira & F. Godinho, 1998. Contrasting impact of small dams on the macroinvertebrates of two Iberian mountain rivers. Hydrobiologia 389: 51–61.

    Google Scholar 

  • Cowell, A. L., T. G. Matthews & P. R. Lind, 2006. Effect of fire on benthic algal assemblage structure and recolonization in intermittent streams. Austral Ecology 31: 696–707.

    Google Scholar 

  • Davies, P. M., 2010. Climate change implications for river restoration in global biodiversity hotspots. Restoration Ecology 18: 261–268.

    Google Scholar 

  • Degani, G., G. N. Herbst, R. Ortal, H. J. Bromley, D. Levanon, Y. Netzer, N. Harari & H. Glazman, 1993. Relationship between current velocity, depth and the invertebrate community in a stable river system. Hydrobiologia 263: 163–172.

    Google Scholar 

  • Delucchi, C. M., 1989. Movement patterns of invertebrates in temporary and permanent streams. Oecologia 78: 199–207.

    Google Scholar 

  • Delucchi, C. M. & B. L. Peckarsky, 1989. Life history patterns of insects in an intermittent and a permanent stream. Journal of the North American Benthological Society 8: 308–321.

    Google Scholar 

  • Dobrowski, S. Z., 2011. A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology 17: 1022–1035.

    Google Scholar 

  • Downes, B. J., P. S. Lake, A. Glaister & N. R. Bond, 2006. Effects of sand sedimentation on the macroinvertebrate fauna of lowland streams: are the effects consistent? Freshwater Biology 51: 144–160.

    Google Scholar 

  • Ferreira, T., J. Oliveira, N. Caiola, A. De Sostoa, F. Casals, R. Cortes, A. Ecomomou, S. Zogaris, D. García-Jalón, M. Ilheu, F. Martínez -Capel, D. Pont, C. Rogers & J. Prenda, 2007. Ecological traits of fish assemblages from Mediterranean Europe and their responses to human disturbance. Fisheries Management & Ecology 14: 473–481.

    CAS  Google Scholar 

  • Figueroa, R., V. Ruiz, X. Neill, E. Araya & A. Palma, 2006. Invertebrate colonization patterns in a Mediterranean Chilean stream. Hydrobiologia 571: 409–417.

    Google Scholar 

  • Flugel, W. A., 1991. River salination due to dryland agriculture in the Western Cape Province, Republic of South Africa. Sediment and stream water quality in a changing environment: trends and explanation. IAHS publication no. 203: 191–200.

  • Fonnesu, A., L. Sabetta & A. Basset, 2005. Factors affecting macroinvertebrate distribution in a mediterranean intermittent stream. Journal of Freshwater Ecology 20: 641–647.

    Google Scholar 

  • García-Roger, E. M., M. M. Sánchez-Montoya, R. Gómez, M. L. Suárez, M. R. Vidal-Abarca, J. Latron, M. Rieradevall & N. Prat, 2011. Do seasonal changes in habitat features influence aquatic macroinvertebrate assemblages in perennial versus temporary Mediterranean streams? Aquatic Science: Research Across Boundaries 73: 567–579.

    Google Scholar 

  • García-Ruiz, J. M., J. I. López-Moreno, S. M. Vicente-Serrano, T. Lasanta-Martínez & S. Beguería, 2011. Mediterranean water resources in a global change scenario. Earth-Science Reviews 105: 121–139.

    Google Scholar 

  • Gasith, A. & V. H. Resh, 1999. Streams in mediterranenan climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.

    Google Scholar 

  • Gomez, I. & R. Araujo, 2008. Channels and ditches as the last shelter for freshwater mussels: the case of Margaritifera auricularia and other naiads inhabiting the mid-Ebro River Basin, Spain. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 658–670.

    Google Scholar 

  • Heller, J., 2007. A historic biogeography of the aquatic fauna of the Levant. Biological Journal of the Linnean Society 92: 625–639.

    Google Scholar 

  • Hermoso, V. & M. Clavero, 2011. Threatening processes and conservation management of endemic freshwater fish in the mediterranean basin: a review. Marine and Freshwater Research 62: 244–254.

    CAS  Google Scholar 

  • Hershkovitz, Y. & A. Gasith, 2012. Resistance, resilience and community dynamics in Mediterranean-climate streams. Hydrobiologia, this issue.

  • Howson, T. J., B. J. Robson & B. D. Mitchell, 2009. Fish assemblage response to experimental rehabilitation of a sand-slugged lowland river. River Research & Applications 25: 1251–1267.

    Google Scholar 

  • Hughes, L., 2003. Climate change and Australia: trends, projections and impacts. Austral Ecology 28: 423–443.

    Google Scholar 

  • Impson, N. D., 2007. Freshwater Fishes. In Services, C. N. S. (ed.), Western Cape Province State of Biodiversity 2007. Cape Nature Scientific Services, Cape Town: 18–33.

    Google Scholar 

  • Jager, H. I. & B. T. Smith, 2008. Sustainable reservoir operation: can we generate hydropower and preserve ecosystem values? River Research & Applications 24: 340–352.

    Google Scholar 

  • James, A. B. W., Z. S. Dewson & R. G. Death, 2008. The effect of experimental flow reductions on macroinvertebrate drift in natural and streamside channels. River Research & Applications 24: 22–35.

    Google Scholar 

  • Jenkins, K. M. & A. J. Boulton, 2003. Connectivity in a dryland river: short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology 84: 2708–2723.

    Google Scholar 

  • Jocque, M., B. Vanschoenwinkel & L. Brendonck, 2010. Freshwater rock pools: a review of habitat characteristics, faunal diversity and conservation value. Freshwater Biology 55: 1587–1602.

    Google Scholar 

  • Johnston, K. & B. J. Robson, 2009. Commensalism used by freshwater crayfish species to survive drying in seasonal habitats. Invertebrate Biology 128: 269–275.

    Google Scholar 

  • Kay, W. R., S. A. Halse, M. D. Scanlon & M. J. Smith, 2001. Distribution and environmental tolerances of aquatic macroinvertebrate families in the agricultural zone of southwestern Australia. Journal of the North American Benthological Society 20: 182–199.

    Google Scholar 

  • Keppel, G., K. P. V. Niel, G. W. Wardell-Johnson, C. J. Yates, M. Byrne, L. Mucina, A. G. T. Schut, S. D. Hopper & S. E. Franklin, 2012. Refugia: identifying and understanding safe havens for biodiversity under climate change. Global Ecology and Biogeography 21: 393–404.

    Google Scholar 

  • Kinal, J. & G. L. Stoneman, 2011. Hydrological impact of two intensities of timber harvest and associated silviculture in the jarrah forest in south-western Australia. Journal of Hydrology 399: 108–120.

    Google Scholar 

  • King, J. M., 1981. The distribution of invertebrate communities in a small South African River. Hydrobiologia 83: 43–65.

    Google Scholar 

  • Klausmeyer, K. R. & M. R. Shaw, 2009. Climate change, habitat loss, protected areas and the climate adaptation potential of species in mediterranean ecosystems worldwide. PLoS ONE 4: e6392.

    PubMed  Google Scholar 

  • Lake, P. S., 2000. Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19: 573–592.

    Google Scholar 

  • Lake, P. S., 2003. Ecological effects of perturbation by drought in flowing waters. Freshwater Biology 48: 1161–1172.

    Google Scholar 

  • Lake, P. S., 2011. Drought and Aquatic Ecosystems: Effects and Responses. Wiley, Chichester.

    Google Scholar 

  • Lake, P. S., N. Bond & P. Reich, 2006. Floods down rivers: from damaging to replenishing forces. Advances in Ecological Research 39: 41–62.

    Google Scholar 

  • Lake, P. S., N. Bond & P. Reich, 2007. Linking ecological theory with stream restoration. Freshwater Biology 52: 597–615.

    Google Scholar 

  • Lancaster, J. & L. R. Belyea, 1997. Nested hierarchies and scale-dependence of mechanisms of flow refugium use. Journal of the North American Benthological Society 16: 221–238.

    Google Scholar 

  • Leland, H. V. & S. V. Fend, 1998. Benthic invertebrate distributions in the San Joaquin River, California, in relation to physical and chemical factors. Canadian Journal of Fisheries and Aquatic Sciences 55: 1051–1067.

    CAS  Google Scholar 

  • Leland, H. V., L. R. Brown & D. K. Mueller, 2001. Distribution of algae in the San Joaquin River, California, in relation to nutrient supply, salinity and other environmental factors. Freshwater Biology 46: 1139–1167.

    Google Scholar 

  • Lind, P. R., B. J. Robson & B. D. Mitchell, 2007. Multiple lines of evidence for the beneficial effects of sustaining environmental flows in two lowland rivers in Victoria, Australia. River Research & Applications 23: 933–946.

    Google Scholar 

  • Lind, P. R., B. J. Robson, T. G. Matthews & B. D. Mitchell, 2009. Can sand slugs in rivers deliver conservation benefits? The biodiversity value of tributary junction plug wetlands in the Glenelg River, Australia. Marine and Freshwater Research 60: 426–434.

    Google Scholar 

  • Loehle, C., 2007. Effect of ephemeral stepping stones on metapopulations in fragmented landscapes. Ecological Complexity 4: 42–47.

    Google Scholar 

  • Lyons, M. N., S. A. Halse, N. Gibson, D. J. Cale, J. A. K. Lane, C. D. Walker, D. A. Mickle & R. H. Froend, 2007. Monitoring wetlands in a salinizing landscape: case studies from the wheatbelt region of Western Australia. Hydrobiologia 591: 147–164.

    Google Scholar 

  • Magalhães, M. F., P. Beja, C. Canas & M. J. Collares-Pereira, 2002. Functional heterogeneity of dry-season fish refugia across a Mediterranean catchment: the roles of habitat and predation. Freshwater Biology 47: 1919–1934.

    Google Scholar 

  • Marr, S. M., M. P. Marchetti, J. D. Olden, E. Garcia-Berthou, D. L. Morgan, I. Arismendi, J. A. Day, C. L. Griffiths & P. H. Skelton, 2010. Freshwater fish introductions in mediterranean-climate regions: are there commonalities in the conservation problem? Diversity and Distributions 16: 606–619.

    Google Scholar 

  • Matthews, K. R. & N. H. Berg, 1997. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. Journal of Fish Biology 50: 50–67.

    Google Scholar 

  • Millán, A., J. Velasco, C. Gutiérrez-Cánovas, P. Arribas, F. Picazo, D. Sánchez-Fernández & P. Abellán, 2011. Mediterranean saline streams in southeast Spain: what do we know? Journal of Arid Environments 75: 1352–1359.

    Google Scholar 

  • Moyle, P. B., 2000. A list of freshwater, anadromous, and euryhaline fishes of California. California Fish and Game 86: 244–258.

    Google Scholar 

  • Olden, J. D. & R. J. Naiman, 2010. Incorporating thermal regimes into environmental flows assessments: modifying dam operations to restore freshwater ecosystem integrity. Freshwater Biology 55: 86–107.

    Google Scholar 

  • Oxford Dictionary of English, 2010. Oxford Dictionary of English, 3rd edn (A. Stevenson, ed.). Oxford University Press, New York.

  • Paskoff, R. P., 1973. Geomorphological processes and characteristic landforms in the Mediterranean regions of the world. In di Castri, F. & H. A. Mooney (eds), Mediterranean Type Ecosystems: Origin and Structure. Springer, Berlin: 53–60.

    Google Scholar 

  • Pinder, A. M., S. A. Halse, J. M. McRae & R. J. Shiel, 2005. Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543: 1–24.

    Google Scholar 

  • Piñol, J., M. J. Lledo & A. Escarre, 1991. Hydrological balance of two Mediterranean forested catchments (Prades, northeast Spain). Hydrological Sciences 36: 95–107.

    Google Scholar 

  • Playford, T. J. & K. F. Walker, 2007. Status of the endangered Glenelg River mussel Hyridella glenelgensis (Unionoida: Hyridae) in Australia. Aquatic Conservation: Marine and Freshwater Ecosystems 18: 679–691.

    Google Scholar 

  • Porter, J. L., R. T. Kingsford & M. A. Brock, 2007. Seed banks in arid wetlands with contrasting flooding, salinity and turbidity regimes. Plant Ecology 188: 215–234.

    Google Scholar 

  • Pusey, B. J., 1989. Aestivation in the teleost fish Lepidogalaxias salamandroides (Mees). Comparative Biochemistry and Physiology Part A: Physiology 92: 137–138.

    Google Scholar 

  • Roberts, J. D., P. Horwitz, G. Wardell-Johnson, L. R. Maxson & M. J. Mahony, 1997. Taxonomy, relationships and conservation of a new genus and species of myobatrachid frog from the high rainfall region of south-western Australia. Copeia 1997: 373–381.

    Google Scholar 

  • Robson, B. J., 2000. The role of residual biofilm in the recolonization of rocky intermittent streams by benthic algae. Marine & Freshwater Research 51: 725–732.

    Google Scholar 

  • Robson, B. J. & T. G. Matthews, 2004. Drought refuges affect algal recolonization in intermittent streams. River Research & Applications 20: 753–763.

    Google Scholar 

  • Robson, B. J., E. T. Chester & J. A. Davis, 1999. Manipulating the intensity of near-bed turbulence in rivers: effects on benthic invertebrates. Freshwater Biology 42: 645–653.

    Google Scholar 

  • Robson, B. J., M. Hogan & T. Forrester, 2005. Hierarchical patterns of invertebrate assemblage structure in stony upland streams change with time and flow permanence. Freshwater Biology 50: 944–953.

    Google Scholar 

  • Robson, B. J., T. G. Matthews, P. R. Lind & N. A. Thomas, 2008a. Pathways for algal recolonization in seasonally-flowing streams. Freshwater Biology 52: 2385–2401.

    Google Scholar 

  • Robson, B. J., E. T. Chester, B. D. Mitchell & T. G. Matthews, 2008b. Identification and management of refuges for aquatic organisms. Waterlines Report Series No. 11, National Water Commission, Canberra.

  • Robson, B. J., E. T. Chester & C. M. Austin, 2011. Why life history information matters: predicting the role of drought refuges for sustaining macroinvertebrate biodiversity in non-perennial streams subject to increased periods of drying. Marine and Freshwater Research 62: 801–810.

    CAS  Google Scholar 

  • Ros, M. D., J. P. Marín-Murcia & M. Aboal, 2009. Biodiversity of diatom assemblages in a mediterranean semiarid stream: implications for conservation. Marine and Freshwater Research 60: 14–24.

    CAS  Google Scholar 

  • Rull, V., 2009. Microrefugia. Journal of Biogeography 36: 481–484.

    Google Scholar 

  • Ryder, D. S., R. J. Watts, E. Nye & A. Burns, 2006. Can flow velocity regulate epixylic biofilm structure in a regulated floodplain river? Marine and Freshwater Research 57: 29–36.

    Google Scholar 

  • Schultz, M. B., D. A. Ierodiaconou, S. A. Smith, P. Horwitz, A. M. M. Richardson, K. A. Crandall & C. M. Austin, 2008. Sea-level changes and palaeo-ranges: reconstruction of ancient shorelines and river drainages and the phylogeny of the Australian land crayfish Engaeus sericatus Clark (Decapoda: Parastacidae). Molecular Ecology 17: 5291–5314.

    PubMed  Google Scholar 

  • Sedell, J. R., G. H. Reeves, F. H. Hauer, J. A. Stanford & C. P. Hawkins, 1990. Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environmental Management 14: 711–724.

    Google Scholar 

  • Sheldon, F., A. J. Boulton & J. T. Puckridge, 2002. Conservation value of variable connectivity: aquatic invertebrate assemblages of channel and floodplain habitats of a central Australian arid-zone river, Cooper Creek. Biological Conservation 103: 13–31.

    Google Scholar 

  • Sheldon, F., S. E. Bunn, J. M. Hughes, A. H. Arthington, S. R. Balcombe & C. S. Fellows, 2010. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Marine and Freshwater Research 61: 885–895.

    CAS  Google Scholar 

  • Sim, L. L., J. M. Chambers & J. A. Davis, 2006. Ecological regime shifts in salinised wetland systems. I. Salinity thresholds for the loss of submerged macrophytes. Hydrobiologia 573: 89–107.

    Google Scholar 

  • Skoulikidis, N. T., I. Karaouzas & K. C. Gritzalis, 2009. Identifying key environmental variables structuring benthic fauna for establishing a biotic typology for Greek running waters. Limnologica 39: 56–66.

    CAS  Google Scholar 

  • Stewart, J. R., A. M. Lister, I. Barnes & L. Dalen, 2010. Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B 277: 661–671.

    Google Scholar 

  • Stromberg, J. C., J. A. Boudell & A. F. Hazelton, 2008. Differences in seed mass between hydric and xeric plants influence seed bank dynamics in a dryland riparian ecosystem. Functional Ecology 22: 205–212.

    Google Scholar 

  • Stubbington, R., 2012. The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research 63: 293–311.

    Google Scholar 

  • Tal, A., N. Al Khateeb, N. Nagouker, H. Akerman, M. Diabat, A. Nassar, R. Angel, M. Abu Sadah, Y. Hershkovitz, A. Gasith, A. Aliewi, D. Halawani, A. Abramson, A. Assi, J. B. Laronne & L. Asaf, 2011. Chemical and biological monitoring in ephemeral and intermittent streams: a study of two transboundary Palestinian-Israeli watersheds. International Journal of River Basin Management 8: 185–205.

    Google Scholar 

  • Urrutia, R. B., A. Lara, R. Villalba, D. A. Christie, C. L. Quesne & A. Cuq, 2011. Multicentury tree ring reconstruction of annual streamflow for the Maule River watershed in south central Chile. Water Resources Research 47: W06527.

    Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, M. Seaman & L. Brendonck, 2008. Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117: 125–134.

    Google Scholar 

  • Verkaik, I., M. Rieradevall, S. D. Cooper, J. M. Melack, T. L. Dudley & N. Prat, 2012. Fire as a disturbance in Mediterranean climate streams. Hydrobiologia, this issue.

  • Viers, J. H. & D. E. Rheinheimer, 2011. Freshwater conservation options for changing climate in California’s Sierra Nevada. Marine and Freshwater Research 62: 266–278.

    CAS  Google Scholar 

  • Wickson, S., E. T. Chester & B. J. Robson, 2012. Aestivation provides flexible mechanisms for survival of stream drying in a larval trichopteran (Leptoceridae). Marine and Freshwater Research 63: 821–826.

    Google Scholar 

  • Wilson, A. M., A. M. Latimer, J. A. Silander, A. E. Gelfand & H. de Klerk, 2010. A hierarchical Bayesian model of wildfire in a mediterranean biodiversity hotspot: implications of weather variability and global circulation. Ecological Modelling 221: 106–112.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Núria Bonada and Vince Resh for the invitation to contribute to this special issue. Some of the ideas developed in this article began with a review of refuges for freshwater biodiversity in Australia that was funded by the National Water Commission, Canberra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belinda J. Robson.

Additional information

Guest editors: N. Bonada & V. H. Resh / Streams in Mediterranean climate regions: lessons learned from the last decade

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robson, B.J., Chester, E.T., Mitchell, B.D. et al. Disturbance and the role of refuges in mediterranean climate streams. Hydrobiologia 719, 77–91 (2013). https://doi.org/10.1007/s10750-012-1371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1371-y

Keywords

Navigation