Skip to main content
Log in

Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

  • Production and Application of Radionuclides
  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22–24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Knapp, Jr. and S. Mirzadeh: Radionuclide Production. In: Principals of Nuclear Medicine. H. N. Wagner, Z. Szabo and J. W. Buchanan, Eds.) W. B. Saunders Co., Philadelphia, 1995, 135.

    Google Scholar 

  2. W. A. Volkert, W. F. Goeckeler, G. J. Ehrhardt, and A. R. Ketring: J. Nucl. Med. 32 (1991) 174.

    Google Scholar 

  3. L. M. Freeman, and M. D. Blaufoux, Editors: Radionuclide Therapy of Intractable Pain, Seminars In Nuclear Medicine XXII (1992),58 pages.

  4. E. B. Silberstein: Doseage and Response in Radiopharmaceutical Therapy of Painful Osseous Metastases. J. Nucl. Med. 37 (1996) 249.

    Google Scholar 

  5. F. F. Knapp, Jr., S. Guhlke, A. L. Beets, H. Amols, and J. Weinberger: J. Nucl. Card. 4, (1997) S-118.

    Google Scholar 

  6. F. F. Knapp, Jr., S. Guhlke, A. L. Beets, H. Amols, and J. Weinberger: J. Nucl. Med. 38, (1997) 124P.

    Google Scholar 

  7. K. N. Geidd, H. Amols, C. Marboe, F. F. Knapp, Jr., and J. Weinberger: Circulation 96 (1997) I-220 (Abstract #1215).

    Google Scholar 

  8. F. F. Knapp, Jr., S., Guhlke, A. L. Beets, M. Stabin, H. Amols and J. Weinberger: Circulation, submitted.

  9. Directory of Nuclear Research Reactors 1994, International Atomic Energy Agency, Vienna, 1995 (TK 9202 D5X 1994).

  10. E. Dadachova, S. Mirzadeh, R. M. Lambrecht, E. L. Hetherington and F. F. Knapp, Jr.: Anal. Chem. 66 (1994) 4272.

    Article  Google Scholar 

  11. S. Mirzadeh, F. F. Knapp, Jr., C. W. Alexander, and L. F. Mausner: Appl. Radiat. Isot., 48 (1996) 441.

    Article  Google Scholar 

  12. F. F. Knapp, Jr., S. Mirzadeh: Eur. J. Nucl. Med. 21 (1994) 1151.

    Article  Google Scholar 

  13. S. Mirzadeh, F. F. Knapp, Jr.: J. Radional. Nucl. Chem., 203 (1996), 471.

    Article  Google Scholar 

  14. M. M. Lambrecht, K. Tomiyoshi, and T. Sekine: Radiochim. Acta 77 (1997) 103.

    Google Scholar 

  15. F. F. Knapp, Jr., A. L. Beets, S. Guhlke, P. O. Zamora, H. Bender, H. Palmedo, and H.-J. Biersack: Antican. Res. 17 (1997) 1783.

    Google Scholar 

  16. F. F. Knapp, Jr., A. P. Callahan, A. L. Beets, S. Mirzadeh, and B.-T. Hsieh: Appl. Radiat. And Isot. 45 (1994) 1123.

    Article  Google Scholar 

  17. F. F. Knapp, Jr., S. Mirzadeh, and A. L. Beets: J. Radional. Nucl. Chem. Lett. 10 (1996) 19.

    Google Scholar 

  18. F. F. Knapp, Jr., E. C. Lisic, S. Mirzadeh, A. P. Callahan, and D. E. Rice: In: Nuclear Medicine in Research and Practice, Schattauer Verlag, Stuutgart, 1992, 183.

    Google Scholar 

  19. F. F. Knapp, Jr., A. P. Callahan, A. L. Beets, S. Mirzadeh, and B.-T. Hsieh: Appl. Radiat. Isot. 45 (1994) 1123.

    Article  Google Scholar 

  20. S. Mirzadeh, F. F. Knapp, Jr., and A. P. Callahan: In: Proceedings of the International Conference on Nuclear Data for Science and Technology, S. M. Qaim, Editor, Springer-Verlag, New York, 1992, p. 595.

    Google Scholar 

  21. S. Mirzadeh, F. F. Knapp, Jr., and R. M. Lambrecht: Radiochim. Acta 77 (1997) 99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knapp, F.F., Beets, A.L., Mirzadeh, S. et al. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA. Czech J Phys 49 (Suppl 1), 799–809 (1999). https://doi.org/10.1007/s10582-999-1065-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10582-999-1065-5

Keywords

Navigation