Skip to main content

Advertisement

Log in

A simulation chain for early prediction of rainfall-induced landslides

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

A new simulation chain for early prediction of rainfall-induced landslides in unsaturated soils is presented. It includes a special computational weather code for forecasting the evolution of the synoptic weather and its changes due to interaction with the Earth’s surface (rainfall pattern), and a hydro-mechanical code to analyse rainfall effects on slope stability by computing degree of saturation and pore pressure changes due to rainwater infiltration. The linkage between these two numerical codes is ensured by an interface with the aim of bringing the data provided by the first code, which operates at basin or slope scale. The simulation chain can work in computational times that may be considered suitable for civil protection operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Agnew MD, Palutikof JP (2000) GIS-based construction of base line climatologies for the Mediterranean using terrain variables. Clim Res 14(2):115–127

    Article  Google Scholar 

  • Antofie TE (2009) Research activity on statistical downscaling for precipitation (RP0057). http://www.cmcc.it/publications-meetings/publications/research-apers/rp0057-isc-02-2009, Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC). Accessed 2009

  • Baillargeon G (1989) Probabilités Statistiques et Techniques de Régression (Statistical Probabilities and Regression Techniques). Editions SMG pp. 1–631

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper N.3, Colorado State University, Fort Collins, Colorado

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annaler 62(1–2):23–27

    Article  Google Scholar 

  • Comegna L, Guida A, Damiano E, Olivares L, Greco R, Picarelli L (2011) Monitoraggio di un pendio naturale in depositi piroclastici sciolti. Proc.14th Convegno Nazionale di Geotecnica, Naples, Italy, Patron. Bologna 2:681–686

    Google Scholar 

  • Comegna L, Damiano E, Greco R, Guida A, Olivares L, Picarelli L (2013) Effects of the vegetation on the hydrological behavior of a loose pyroclastic deposit. Proc Environ Sci 19:922–931. doi:10.1016/j.proenv.2013.06.102

    Article  Google Scholar 

  • Damiano E, Olivares L (2010) The role of infiltration processes in steep slope stability of pyroclastic granular soils: laboratory and numerical investigation. Nat Hazards 52(2):329–350

    Article  Google Scholar 

  • Damiano E, Greco R, Guida A, Olivares L (2008) Early warning of fast landslides triggering based on instrumented slope data analysis. Proc. iEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating Sciences and InformationTechnology for Environmental Assessment andDecision Making. iEMSs 3:1461–1468

    Google Scholar 

  • Damiano E, Mercogliano P, Netti N, Olivares L (2012a) A “simulation chain” to define a multidisciplinary Decision Support System for landslide risk management in pyroclastic soils. Nat Hazards Earth Sci Syst 12(4):989–1008

    Article  Google Scholar 

  • Damiano E, Olivares L, Picarelli L (2012b) Steep-slope monitoring in unsaturated pyroclastic soils. Eng Geol 137–138:1–12

    Article  Google Scholar 

  • Doms G and Schattler U (1999) The non-hydrostatic limited area model LM (Lokal Model) of DWD. Part I. Deutscher Wetterdienst, Germany, pp. 1–169. http://cosmo-model.cscs.ch. Accessed 1999

  • Doms G, Schattler U (2002) A Description of the Nonhydrostatic Regional Model LM. Dtsch Wetterdienst Dtsch Wetterdienst Germany 1:0–140

    Google Scholar 

  • ECMWF, Part VII (2004) ECMWF Wave-model documentation, in IFS documentation CY28r1. http://www.ecmwf.int/research/ifsdocs/CY28r1/index.html. Accessed 2004

  • Fredlund DG and Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

  • Greco R, Guida A, Damiano E, Olivares L (2010) Soil water content and suction monitoring in model slopes for shallow flowslides early warning applications. Phys Chem Earth 35(3–5):127–136

    Article  Google Scholar 

  • Greco R, Comegna L, Damiano E, Guida A, Olivares L, Picarelli L (2013a) Hydrological modelling of a slope covered with shallow pyroclastic deposits from field monitoring data. Hydrol Earth Syst Sci Discuss 10:5799–5830

    Article  Google Scholar 

  • Greco R, Giorgio M, Capparelli G, Versace P (2013b) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79. doi:10.1016/j.enggeo.2012.11.009

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17

    Article  Google Scholar 

  • Hallegatte S (2012) A cost effective solution to reduce disaster losses in developing countries. hydro-meteorological services, early warning, and evacuation. Policy Research Working Paper n. 6058. The World Bank. Sustainable Development Network. Office of the Chief Economist

  • Lampitiello S (2004) Resistenza non drenata e suscettività alla liquefazione di ceneri vulcaniche della Regione Campania. PhD Thesis, Seconda Università di Napoli, Italy

    Google Scholar 

  • Netti N, Damiano E, Greco R, Olivares L, Savastano V, Mercogliano P (2012) Natural hazard risk management: a multidisciplinary approach to define a decision support system for shallow rainfall-induced landslides. Open Hydrol 6:97–111

    Article  Google Scholar 

  • Ninyerola M, Pons X, Roure JM (2000) A methodological approach of climatological modeling of air temperature and precipitation through GIS techniques. Int J Climatol 20:1823–1841

    Article  Google Scholar 

  • Olivares L (2001) Static liquefaction: an hypothesis for explaining transition from slide to flow in pyroclastic soils. Proc. ISSMGE CT-11, Transition from slide to flow: mechanisms and remedial measures, Trabzon

    Google Scholar 

  • Olivares L, Damiano E (2007) Postfailure mechanics of landslides: laboratory investigation of flowslides in pyroclastic soils. ASCE J Geotech Geoenviron Eng 133(1):51–62

    Article  Google Scholar 

  • Olivares L, Picarelli L (2003) Shallow flowslides triggered by intense rainfalls on natural slopes covered by loose unsaturated pyroclastic soils. Géotechnique 53(2):283–288

    Article  Google Scholar 

  • Olivares L, Picarelli L (2006) Modelling of flowslides behaviour for risk mitigation Physical Modelling in Geotechnics, 6th ICPMG’06—Proceedings of the 6th International Conference on Physical Modelling in Geotechnics 1–2:99–112

  • Olivares L, Tommasi P (2008) The role of suction and its changes on stability of steep slopes in unsaturated granular soils. X International Symposium on Ladslides and Enginneered Slopes—Xi’an—China, 1st edn. CRC Press/Balkema, Nederland, pp 203–216

    Google Scholar 

  • Olivares L, Andreozzi L, Damiano E, Avolio B, Picarelli L (2003) Hydrological response of a steep slope in unsaturated pyroclastic soils. Proc. Int. Conf. Fast Slope Movements—Prediction and Prevention for Risk Mitigation”, Napoli, 11–13 May, 2003. Patron 1:391–398

    Google Scholar 

  • Olivares L, Damiano E, Greco R, Zeni L, Picarelli L, Minardo A, Guida A, Bernini R (2009) An instrumented flume to investigate the mechanics of rainfall-induced landslides in unsaturated granular soils. Geotech Test J 32:1–11

    Google Scholar 

  • Olivares L, Damiano E, Capparelli G (2012) A complete model for landslides prediction. Validation for the analysis of infiltration processes in pyroclastic soils. Rendiconti Online Societa GeologicaItaliana 21 (PART 1) 1: 577–579

    Google Scholar 

  • Picarelli L, Evangelista A, Rolandi G, Paone A, Nicotera MV, Olivares L, Scotto Di Santolo A, Lampitiello S, Rolandi M (2006) Mechanical properties of pyroclastic soils in Campania Region. Proc 2nd Int Work on Characterisation and Engineering Properties of Natural Soils, Singapore 3:2331–2383

    Google Scholar 

  • Picarelli L, Olivares L, Avolio B (2008a) Zoning for flowslide and debris flow in pyroclastic soils of Campania Region based on “infinite slope” analysis. Eng Geol. doi:10.1016/J.engeo.2008.03.015

    Google Scholar 

  • Picarelli L, Olivares L, Comegna L, Damiano E (2008b) Mechanical aspects of flow-like movements in granular and fine-grained soils. Rock Mech Rock Eng Springer Ned 41(1):179–197. doi:10.1007/s00603-007-0135x

    Article  Google Scholar 

  • Picarelli L, Versace P, Olivares L, Damiano E (2008c) Prediction of rainfall-induced landslides in unsaturated granular soils for setting up of early warning systems. Proc. 2007 Int. Forum on Landslide Disaster Management, Hong Kong 10–12 December 2007, Geotechnical Division. Hong Kong Inst Eng 1:643–665

    Google Scholar 

  • Pirone M, Damiano E, Picarelli L, Olivares L, Urciuoli G (2012) Groundwater-atmosphere interaction in unsaturated pyroclastic slopes at two sites in Italy. Riv Ital Geoecnica 3:29–49

    Google Scholar 

  • Saito H, Nakayama D, Matsuyama H (2010) Relationship between the initiation of a shallow landslide and rainfall intensity-duration thresholds in Japan. Geomorphology 118:167–175

    Article  Google Scholar 

  • Simmons AJ, Burridge DM, Jarraud M, Girard C, Wergen W (1989) The ECMWF medium-range prediction models: development of the numerical formulations and the impact of increased resolution. Meteorol Atmos Phys 40:28–60

    Article  Google Scholar 

  • Trentmann J, Keil C, Salzmann M, Barthlott C, Bauer HS, Schwitalla T, Lawrence MG, Leuenberger D, Wulfmeyer V, Corsmeier U, Kottmeier C, Wernli H (2009) Multi-model simulations of a convective situation in low-mountain terrain in central Europe. Meteorol Atmos Phys 103:95–103

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Sci Soc Am J 44:615–628

    Google Scholar 

  • Vigier M (1981) Méthodes d’assurance qualité—fiabilité et d’expérimentation (quality insurance methods—reliability and experiments). Collect Univ Compiègne 1:1–398

    Google Scholar 

  • Wilson LJ (1999) Verification of precipitation forecasts: a survey of methodology. Part I: General Framework and Verification of Continuous Variables, Environment, Canada

    Google Scholar 

  • Zepeda-Arce J, Foufoula-Georgiou E, Droegemeier K (2000) Space-time rainfall organization and its role in validating quantitative precipitation forecasts. J Geophys Res 105(D8):10129–10146

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Campania Civil Protection Agency which provided precipitation data from 2001 to 2010. The authors thank the COSMO consortium, the SMA–USAM (General Office for Air Space and Meteorology of the Italian meteorological service), for the availability of the COSMO LM model for research application and for the Provision of Guidance and Support. The work was partially supported by the UE/FP7 SAFELAND G.A. no. 226479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Olivares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivares, L., Damiano, E., Mercogliano, P. et al. A simulation chain for early prediction of rainfall-induced landslides. Landslides 11, 765–777 (2014). https://doi.org/10.1007/s10346-013-0430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-013-0430-4

Keywords

Navigation