Skip to main content
Log in

Credit spreads, endogenous bankruptcy and liquidity risk

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

In this paper, we consider a bond valuation model with both credit risk and liquidity risk to show that credit spreads are not negligible for short maturities. We adopt the structural approach to model credit risk, where the default triggering barrier is determined endogenously by maximizing equity value. As for liquidity risk, we assume that bondholders may encounter liquidity shocks during the lifetime of corporate bonds, and have to sell the bond immediately at the price, which is assumed to be a fraction of the price in a perfectly liquid market. Under this framework, we derive explicit expressions for corporate bond, firm value and bankruptcy trigger. Finally, numerical illustrations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agliardi E, Agliardi R (2009) Fuzzy defaultable bonds. Fuzzy Set Syst 160:2597–2607

    Article  Google Scholar 

  • Agliardi R (2011) A comprehensive structural model for defaultable fixed-income bonds. Quant Financ 11:749–762

    Article  Google Scholar 

  • Anderson R, Sundaresan S (1996) Design and valuation of debt contracts. Rev Financ Stud 9:37–68

    Article  Google Scholar 

  • Anderson R, Sundaresan S (2000) A comparative study of structural models of corporate bond yields: an exploratory investigation. J Bank Financ 24:255–269

    Article  Google Scholar 

  • Black F, Cox JC (1976) Valuing corporate securities: some effects of bond indenture provisions. J Financ 31:351–367

    Article  Google Scholar 

  • Delianedis G, Geske R (2001) The components of corporate credit spreads: default, recovery, tax, jumps, liquidity and market factors, working paper, University of California at Los Angeles

  • Duffie D, Lando D (2001) Term structures of credit spreads with incomplete accounting information. Econometrica 69:633–664

    Article  Google Scholar 

  • Ericsson J, Renault O (2006) Liquidity and credit risk. J Financ 61:2219–2250

    Article  Google Scholar 

  • Giesecke K (2006) Default and information. J Econ Dyn Control 30:2281–2303

    Article  Google Scholar 

  • Giesecke K, Goldberg LR (2004) Forecasting default in the face of uncertainty. J Deriv 12:14–25

    Article  Google Scholar 

  • Goldstein R, Ju N, Leland HE (2001) An EBIT-based model of dynamic capital structure. J Bus 74:483–512

    Article  Google Scholar 

  • Harrison J (1986) Brownian motion and stochastic flow systems. Wiley, New York

    Google Scholar 

  • Hilberink B, Rogers LCG (2002) Optimal capital structure and endogenous default. Financ Stoch 6:237–263

    Article  Google Scholar 

  • Huang JZ, Huang M (2002) How much of the corporate-treasury yield spread is due to credit risk? A new calibration approach, working paper, Penn State University

  • Jarrow R, Protter P (2004) Structural versus reduced form models: a new information based perspective. J Invest Manag 2:1–10

    Google Scholar 

  • Jones EP, Mason SP, Rosenfeld E (1984) Contingent claims analysis of corporate capital structures: an empirical investigation. J Financ 39:611–625

    Article  Google Scholar 

  • Leland HE (1994) Corporate debt value, bond covenants, and optimal captital structure. J Financ 49:1213–1252

    Article  Google Scholar 

  • Leland HE, Toft K (1996) Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. J Financ 51:987–1019

    Article  Google Scholar 

  • Longstaff FA, Schwartz ES (1995) A simple approach to valuing risky fixed and floating rate debt. J Financ 50:1767–1774

    Article  Google Scholar 

  • Longstaff FA, Schwartz ES (2001) Valuing American options by simulation: a simple least-aquares approch. Rev Financ Stud 14:113–147

    Article  Google Scholar 

  • Merton RC (1974) On the pricing of corporate debt: the risk structure of interest rates. J Financ 29:449–470

    Google Scholar 

  • Tychon P, Vannetelbosch V (2005) A model of corporate bond pricing with liquidity and marketability risk. J Credit Risk 1:3–35

    Google Scholar 

  • Yu F (2002) Modeling expected return on defaultable bonds. J Fixed Income 2:69–81

    Article  Google Scholar 

  • Yu F (2005) Accounting transparency and the term structure of credit spreads. J Financ Econ 75:53–84

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees and the editor for providing a number of valuable comments that led to several important improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingchun Wang.

Additional information

Supported by the National Natural Science Foundation of China (No. 11101223 and 11271203).

Appendix

Appendix

Proof of Proposition 1 The bond value is given by

$$\begin{aligned} d^I(V;V_B,t)&= \int _0^{t}{e}^{-rs}c(t)[1-F(s;V,V_B)]\mathbf{Q }[N_s=0]\mathrm{d }s\nonumber \\&+\, e^{-rt}p(t)[1-F(t;V,V_B)]\mathbf{Q }[N_t=0]\nonumber \\&+\int _0^{t}{e}^{-rs}\rho (t)V_Bf(s;V,V_B)\mathbf{Q }[N_s=0]\mathrm{d }s \nonumber \\&+\, \alpha \mathbf{E }_{\mathbf{Q }}\int _0^{t}{e}^{-rs}d^L(V_s;V_B,t-s)[1-F(s;V,V_B)]\lambda e^{-\lambda s}\mathrm{d }s.\qquad \end{aligned}$$
(11)

Denote

$$\begin{aligned} I(r,\lambda , t):=\int _0^{t}{e}^{-(r+\lambda )s}f(s;V,V_B)\mathrm{d }s. \end{aligned}$$

For the first term of (11), integration by parts implies that

$$\begin{aligned} \begin{aligned}&\int _0^t e^{-rs}c(t)[1-F(s;V,V_B)]\mathbf{Q }[N_s=0]\mathrm{d }s\\&\quad =\int _0^te^{-(r+\lambda )s}c(t)[1-F(s;V,V_B)]\mathrm{d }s\\&\quad =-\frac{c(t)}{r+\lambda }\left[e^{-(r+\lambda )t}(1-F(t;V,V_B))-1+\int _0^te^{-(r+\lambda )s}f(s;V,V_B)\mathrm{d }s\right]\\&\quad =\frac{c(t)}{r+\lambda }-\frac{c(t)}{r+\lambda }[1-F(t;V,V_B)]e^{-(r+\lambda )t}-\frac{c(t)}{r+\lambda }I(r,\lambda , t). \end{aligned} \end{aligned}$$
(12)

As for the second term of (11), it holds that

$$\begin{aligned} e^{-rt}p(t)[1-F(t;V,V_B)]\mathbf{Q }[N_t=0]=p(t)[1-F(t;V,V_B)]e^{-(r+\lambda )t}. \end{aligned}$$
(13)

It is easy to show that the third term of (11) equals,

$$\begin{aligned} \begin{aligned} \int _0^te^{-rs}\rho (t)V_Bf(s;V,V_B)\mathbf{Q }[N_s=0]\mathrm{d }s&=\rho (t)V_B\int _0^te^{-(r+\lambda )s}f(s;V,V_B)\mathrm{d }s\\&=\rho (t)V_BI(r,\lambda , t). \end{aligned} \end{aligned}$$
(14)

Note that in a perfectly liquid markets, the following holds,

$$\begin{aligned} d^L(V;V_B,t)&= \int _0^se^{-ru}c(t)[1-F(u;V,V_B)]\mathrm{d }u\nonumber \\&+\int _0^s e^{-ru}\rho (t)V_Bf(u;V,V_B)\mathrm{d }u \nonumber \\&+\, e^{-rs}d^L(V_s;V_B,t-s)[1-F(s;V,V_B)]. \end{aligned}$$
(15)

Then using integration by parts, the last term of (11) becomes

$$\begin{aligned} \begin{aligned}&\alpha \mathbf{E }_{\mathbf{Q }}\int _0^{t}{e}^{-rs}d^L(V_s;V_B,t-s)[1-F(s;V,V_B)]\lambda e^{-\lambda s}\mathrm{d }s \\&\quad =\alpha \lambda \left\{ \int _0^te^{-\lambda s}\left[d^L(V;V_B,t)-\frac{c(t)}{r}+\frac{c(t)}{r}(1-F(s))e^{-rs}\right.\right.\\&\qquad -\left.\left.\left(\rho (t)V_B-\frac{c(t)}{r}\right)G(s)\right]\mathrm{d }s\right\} \\&\quad =\alpha \lambda \left\{ \int _0^te^{-\lambda s}\left(d^L(V;V_B,t) -\frac{c(t)}{r}\right)\mathrm{d }s+\frac{c(t)}{r}\int _0^{t}{e}^{-(\lambda +r) s}(1-F(s))\mathrm{d }s\right.\\&\qquad -\left.\left(\rho (t)V_B-\frac{c(t)}{r}\right)\int _0^{t}{e}^{-\lambda s}G(s)\mathrm{d }s\right\} \\&\quad =\alpha \lambda \left\{ \frac{ d^L(V;V_B,t) -\frac{c(t)}{r}}{\lambda }(1-e^{-\lambda t})+\frac{c(t)}{r}\int _0^te^{-(\lambda +r) s}(1-F(s))\mathrm{d }s\right.\\&\qquad -\left.\left(\rho (t)V_B-\frac{c(t)}{r}\right)\int _0^t e^{-\lambda s}G(s)\mathrm{d }s\right\} . \end{aligned} \end{aligned}$$
(16)

Moreover, we have that

$$\begin{aligned} \int _0^t e^{-\lambda s}G(s)\mathrm{d }s&= -\frac{1}{\lambda }\left[G(t)e^{-\lambda t} -\int _0^te^{-(\lambda +r) s}f(s)\mathrm{d }s\right]\nonumber \\ \\&= -\frac{1}{\lambda }G(T)e^{-\lambda T}+\frac{1}{\lambda }I(r,\lambda , T).\nonumber \end{aligned}$$
(17)

Now we just need to consider the integral \(I(r,\lambda , t)\) so that we can get the explicit expressions of \(d^I(V, V_B, t)\). From Harrison (1986), we can find the expressions for \(f(t)\),

$$\begin{aligned} I(r,\lambda , t)&= \int _0^te^{-(r+\lambda )s}f(s;V,V_B)\mathrm{d }s\nonumber \\&= \int _0^t e^{-(r+\lambda ) s}\frac{b}{\sigma \sqrt{2\pi s^3}}e^{-\frac{1}{2}\left(\frac{b+(r-\delta -\frac{1}{2}\sigma ^2)s}{\sigma \sqrt{s}}\right)^2}\mathrm{d }s\nonumber \\&= e^{\frac{b(R-r)}{\sigma ^2}}\int _0^t e^{-R s}\frac{b}{\sigma \sqrt{2\pi s^3}}e^{-\frac{1}{2}\left(\frac{b+(R-\delta -\frac{1}{2}\sigma ^2)s}{\sigma \sqrt{s}}\right)^2}\mathrm{d }s\nonumber \\ \\&= e^{\frac{b(R-r)}{\sigma ^2}}\left\{ \left(\frac{V}{V_B}\right)^{-A+Z}\!\!\!N[Q_1(t)]+\left(\frac{V}{V_B}\right)^{-A-Z}\!\!\!N[Q_2(t)]\right\} ,\nonumber \end{aligned}$$
(18)

where

$$\begin{aligned}&R=\delta -\frac{\sigma ^2}{2}+\sqrt{2(r+\lambda )\sigma ^2+\left(r-\delta -\frac{\sigma ^2}{2}\right)^2-2\delta \sigma ^2},\\&Q_1(t)=\frac{-b-Z\sigma ^2t}{\sigma \sqrt{t}};\ \ \ \ \ \ Q_2(t)=\frac{-b+Z\sigma ^2t}{\sigma \sqrt{t}};\\&A=\frac{R-\delta -\frac{\sigma ^2}{2}}{\sigma ^2};\ \ \ \ \ b=\ln \left(\frac{V}{V_B}\right);\ \ \ \ \ Z=\frac{[(A\sigma ^2)^2+2R\sigma ^2]^{\frac{1}{2}}}{\sigma ^2}, \end{aligned}$$

and \(N(\cdot )\) is the cumulative standard normal distribution. Here, we have used the fact that,

$$\begin{aligned} \int _0^t e^{-r s}\frac{b}{\sigma \sqrt{2\pi s^3}}e^{-\frac{1}{2}\left(\frac{b+(r-\delta -\frac{1}{2}\sigma ^2)s}{\sigma \sqrt{s}}\right)^2}\mathrm{d }s\!=\!\left(\frac{V}{V_B}\right)^{-a+z}\!\!\!N[q_1(t)]+\left(\frac{V}{V_B}\right)^{-a-z}\!\!\!N[q_2(t)], \end{aligned}$$

where

$$\begin{aligned}&h_1(t)=\frac{-b-a\sigma ^2t}{\sigma \sqrt{t}};\ \ \ \ \ \ h_2(t)=\frac{-b+a\sigma ^2t}{\sigma \sqrt{t}};\\&q_1(t)=\frac{-b-z\sigma ^2t}{\sigma \sqrt{t}};\ \ \ \ \ \ q_2(t)=\frac{-b+z\sigma ^2t}{\sigma \sqrt{t}};\\&a=\frac{r-\delta -\frac{\sigma ^2}{2}}{\sigma ^2};\ \ \ \ \ b=\ln \left(\frac{V}{V_B}\right);\ \ \ \ \ z=\frac{[(a\sigma ^2)^2+2r\sigma ^2]^{\frac{1}{2}}}{\sigma ^2}, \end{aligned}$$

and \(N(\cdot )\) is the cumulative standard normal distribution. Therefore, (12)–(18) jointly yield that

$$\begin{aligned} d^I(V;V_B,t)=\frac{c(t)(\alpha \lambda +r)}{r(r+\lambda )}+K_1(t)I(r,\lambda , t)+K_2(t)(1-F(t))+K_3(t)G(t), \end{aligned}$$
(19)

where \(K_1\), \(K_2\) and \(K_3\) are defined in Proposition 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J., Wang, X. & Wang, Y. Credit spreads, endogenous bankruptcy and liquidity risk. Comput Manag Sci 9, 515–530 (2012). https://doi.org/10.1007/s10287-012-0153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-012-0153-3

Keywords

Mathematics Subject Classification (2000)

Navigation