Skip to main content
Log in

Optofluidic time-stretch microscopy: recent advances

  • Special Section: Regular Paper
  • Optics Awards 2017 (OA 2017)
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Flow cytometry is an indispensable method for valuable applications in numerous fields such as immunology, pathology, pharmacology, molecular biology, and marine biology. Optofluidic time-stretch microscopy is superior to conventional flow cytometry methods for its capability to acquire high-quality images of single cells at a high-throughput exceeding 10,000 cells per second. This makes it possible to extract copious information from cellular images for accurate cell detection and analysis with the assistance of machine learning. Optofluidic time-stretch microscopy has proven its effectivity in various applications, including microalga-based biofuel production, evaluation of thrombotic disorders, as well as drug screening and discovery. In this review, we discuss the principles and recent advances of optofluidic time-stretch microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goda, K., Ayazi, A., Gossett, D.R., Sadasivam, J., Lonappan, C.K., Sollier, E., Fard, A.M., Hur, S.C., Adam, J., Murray, C., Wang, C., Brackbill, N., Di Carlo, D., Jalali, B.: High-throughput single-microparticle imaging flow analyzer. Proc. Natl. Acad. Sci. 109(29), 11630–11635 (2012)

    Article  ADS  Google Scholar 

  2. Malo, N., Hanley, J.A., Cerquozzi, S., Pelletier, J., Nadon, R.: Statistical practice in high-throughput screening data analysis. Nat. Biotechnol. 24(2), 167–175 (2006)

    Article  Google Scholar 

  3. Corash, L.: Measurement of platelet activation by fluorescence-activated flow cytometry. Blood Cells 16(1), 97–108 (1990)

    Google Scholar 

  4. Usaj, M.M., Styles, E.B., Verster, A.J., Friesen, H., Boone, C., Andrews, B.J.: High-content screening for quantitative cell biology. Trends Cell Biol. 26(8), 598–611 (2016)

    Article  Google Scholar 

  5. Porichis, F., Hart, M.G., Griesbeck, M., Everett, H.L., Hassan, M., Baxter, A.E., Lindqvist, M., Miller, S.M., Soghoian, D.Z., Kavanagh, D.G., Reynolds, S., Norris, B., Mordecai, S.K., Quan, N., Lai, C., Kaufmann, D.E.: High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat. Commun. 5, 5641 (2014)

    Article  ADS  Google Scholar 

  6. Goda, K., Tsia, K.K., Jalali, B.: Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458(7242), 1145–1149 (2009)

    Article  ADS  Google Scholar 

  7. Lei, C., Guo, B., Cheng, Z., Goda, K.: Optical time-stretch imaging: principles and applications. Appl. Phys. Rev. 3(1), 011102 (2016)

    Article  ADS  Google Scholar 

  8. Lau, A.K., Shum, H.C., Wong, K.K., Tsia, K.K.: Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry. Lab Chip 16(10), 1743–1756 (2016)

    Article  Google Scholar 

  9. Ugawa, M., Lei, C., Nozawa, T., Ideguchi, T., Di Carlo, D., Ota, S., Ozeki, Y., Goda, K.: High-throughput optofluidic particle profiling with morphological and chemical specificity. Opt. Lett. 40(20), 4803–4806 (2015)

    Article  ADS  Google Scholar 

  10. Lei, C., Ito, T., Ugawa, M., Nozawa, T., Iwata, O., Maki, M., Okada, G., Kobayashi, H., Sun, X., Tiamsak, P., Tsumura, N., Suzuki, K., Di Carlo, D., Ozeki, Y., Goda, K.: High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomed. Opt. Express 7(7), 2703–2708 (2016)

    Article  Google Scholar 

  11. Lai, Q.T.K., Lee, K.C.M., Tang, A.H.L., Wong, K.K.Y., So, H.K.H., Tsia, K.K.: High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton. Opt. Express 24(25), 28170–28184 (2016)

    Article  ADS  Google Scholar 

  12. Jiang, Y., Lei, C., Yasumoto, A., Kobayashi, H., Aisaka, Y., Ito, T., Guo, B., Nitta, N., Kutsuna, N., Ozeki, Y., Nakagawa, A., Yatomi, Y., Goda, K.: Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab Chip 17(14), 2337–2530 (2017)

    Article  Google Scholar 

  13. Kobayashi, H., Lei, C., Wu, Y., Mao, A., Jiang, Y., Guo, B., Ozeki, Y., Goda, K.: Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Sci. Rep. 7(1), 12454 (2017)

    Article  ADS  Google Scholar 

  14. Golden, J.P., Justin, G.A., Nasir, M., Ligler, F.S.: Hydrodynamic focusing-a versatile tool. Anal. Bioanal. Chem. 402(1), 325–335 (2012)

    Article  Google Scholar 

  15. Di Carlo, D.: Inertial microfluidics. Lab Chip 9(21), 3038–3046 (2009)

    Article  Google Scholar 

  16. Grenvall, C., Antfolk, C., Bisgaard, C.Z., Laurell, T.: Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration. Lab Chip 14(24), 4629–4637 (2014)

    Article  Google Scholar 

  17. Goda, K., Jalali, B.: Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7(2), 102–112 (2013)

    Article  ADS  Google Scholar 

  18. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P.: Land clearing and the biofuel carbon debt. Science 319(5867), 1235–1238 (2008)

    Article  ADS  Google Scholar 

  19. Giometto, A., Altermatt, F., Maritan, A., Stocker, R., Rinaldo, A.: Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis. Proc. Natl. Acad. Sci. 112(22), 7045–7050 (2015)

    Article  ADS  Google Scholar 

  20. Rezic, T., Filipovic, J., Santek, B.: Photo-mixotrophic cultivation of algae Euglena gracilis for lipid production. Agric. Conspec. Sci. 78(1), 65–69 (2013)

    Google Scholar 

  21. Wilson, R.M., Michel, P., Olsen, S., Gibberd, R.W., Vincent, C., El-Assady, R., Rasslan, O., Qsous, S., Macharia, W.M., Sahel, A., Whittaker, S., Abdo-Ali, M., Letaief, M., Ahmed, N.A., Abdellatif, A., Larizgoitia, I., Worki, W.H.: O.P.S.E.A.: patient safety in developing countries: retrospective estimation of scale and nature of harm to patients in hospital. Br. Med. J. 344, e832 (2012)

    Article  Google Scholar 

  22. Raskob, G.E., Angchaisuksiri, P., Blanco, A.N., Buller, H., Gallus, A., Hunt, B.J., Hylek, E.M., Kakkar, A., Konstantinides, S.V., McCumber, M., Ozaki, Y., Wendelboe, A., Weitz, J.I., World, I.S.C.: Thrombosis: a major contributor to the global disease burden. J. Thromb. Haemost. 12(10), 1580–1590 (2014)

    Article  Google Scholar 

  23. Jackson, S.P.: The growing complexity of platelet aggregation. Blood 109(12), 5087–5095 (2007)

    Article  Google Scholar 

  24. Fabre, J.E., Nguyen, M.T., Latour, A., Keifer, J.A., Audoly, L.P., Coffman, T.M., Koller, B.H.: Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat. Med. 5(10), 1199–1202 (1999)

    Article  Google Scholar 

  25. Bull, B.S., Schneiderman, M.A., Brecher, G.: Platelet counts with the Coulter counter. Am. J. Clin. Pathol. 44(6), 678–688 (1965)

    Article  Google Scholar 

  26. Satoh, K., Yatomi, Y., Kubota, F., Ozaki, Y.: Small aggregates of platelets can be detected sensitively by a flow cytometer equipped with an imaging device: mechanisms of epinephrine-induced aggregation and antiplatelet effects of beraprost. Cytometry 48(4), 194–201 (2002)

    Article  Google Scholar 

  27. Guo, B., Lei, C., Ito, T., Jiang, Y., Ozeki, Y., Goda, K.: High-throughput accurate single-cell screening of Euglena gracilis with fluorescence-assisted optofluidic time-stretch microscopy. PLoS One 11(11), e0166214 (2016)

    Article  Google Scholar 

  28. Futamura, Y., Kawatani, M., Kazami, S., Tanaka, K., Muroi, M., Shimizu, T., Tomita, K., Watanabe, N., Osada, H.: Morphobase, an encyclopedic cell morphology database, and its use for drug target identification. Chem Biol 19(12), 1620–1630 (2012)

    Article  Google Scholar 

  29. Heynen-Genel, S., Pache, L., Chanda, S.K., Rosen, J.: Functional genomic and high-content screening for target discovery and deconvolution. Expert Opin. Drug Dis. 7(10), 955–968 (2012)

    Article  Google Scholar 

  30. Wojcik, K., Dobrucki, J.W.: Interaction of a DNA intercalator DRAQ5, and a minor groove binder SYTO17, with chromatin in live cells-influence on chromatin organization and histone-DNA interactions. Cytom. A 73A(6), 555–562 (2008)

    Article  Google Scholar 

  31. Blasi, T., Hennig, H., Summers, H.D., Theis, F.J., Cerveira, J., Patterson, J.O., Davies, D., Filby, A., Carpenter, A.E., Rees, P.: Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat. Commun. 7, 10256 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was primarily funded by the ImPACT Program of the CSTI (Cabinet Office, Government of Japan) and partly by Noguchi Shitagau Research Grant, New Technology Development Foundation, Konica Minolta Imaging Science Encouragement Award, JSPS KAKENHI Grant numbers 25702024 and 25560190, JGC-S Scholarship Foundation, Mitsubishi Foundation, TOBIRA Award, and Takeda Science Foundation. K. G. was partly supported by Burroughs Wellcome Foundation. The fabrication of the microfluidic device was conducted at the Center for Nano Lithography & Analysis, University of Tokyo, supported by the MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lei.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Nitta, N., Ozeki, Y. et al. Optofluidic time-stretch microscopy: recent advances. Opt Rev 25, 464–472 (2018). https://doi.org/10.1007/s10043-018-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0434-3

Keywords

Navigation