Skip to main content
Log in

Arching effect on lateral pressure of confined granular material: numerical and theoretical analysis

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Owing to the arching effect caused by stress transfer, the lateral pressure of confined granular material will be influenced by both the wall movement and the confined material width. In this paper, the lateral pressure of confined granular material is studied through the numerical and theoretical analysis. Discrete element-based numerical simulations of different widths are conducted to model the transition of the resultant lateral force. Based on numerical results, an analytical model for estimating the lateral pressure at limit state is proposed by the use of the horizontal slice element method. Moreover, the mobilization models of the granule–wall interface friction angle and the internal friction angle of the granular material are introduced to yield the lateral pressure at nonlimit state. Both numerical and theoretical results indicate that the transition of the lateral pressure can be divided into two stages based on the magnitudes of wall movements, at which the interface friction angle and internal friction angle are fully mobilized. For models with smaller width, the pressure decreases more rapidly in the first stage and eventually reaches smaller lateral pressure at active state, because the vertical stress of the material is transferred to the walls and the stress in the material is redistributed due to the superimposition of the arching effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

B :

Width of the soil

\(\hbox {d}G\) :

Weight of slice element

dz :

Thickness of horizontal slice element

h :

Depth of the intersection of slip surface and adjacent wall

H :

Height of retaining wall

\(h_b \) :

Height of retaining wall base

\(k_0 \) :

Coefficient of earth pressure at-rest

\(k_n \) :

Normal spring stiffness

\(k_s \) :

Tangential spring stiffness

P :

Total lateral earth pressure

\(F_{x_{m}} \) :

Horizontal force on the translational wall

\(F_{y_{m}} \) :

Vertical force on the translational wall

\(r_p\) :

Particle radius

s :

Wall movement

\(s_a \) :

Wall movement for internal friction angle of the soil attains a maximum value

\(s_c \) :

Wall movement for Wall friction attains a maximum value

z :

Depth from the wall top

\(\alpha \) :

Angle of slip surface to horizontal

\(\gamma \) :

Soil density

\(\delta \) :

Soil–wall interface friction angle

\(\delta _m \) :

Mobilized \(\delta \)

\(\theta \) :

Angle of the minor principal plane with respect to the horizontal at the wall

\(\mu _{p-p} \) :

Coefficient of friction between particles

\(\mu _{p-w} \) :

Coefficient of friction between wall and particle

\(\varphi \) :

Internal friction angle of the soil

\(\varphi _0 \) :

Initial angle of internal friction

\(\varphi _m \) :

Mobilized \(\varphi \)

\(\rho _p \) :

Particle density

\(\sigma \) :

Normal stress

\(\sigma _1 \) :

Major principal stress

\(\sigma _3 \) :

Minor principal stress

\(\tau \) :

Shear stress

References

  1. Coulomb, C.A.: Essais sur une application des regles des maximis et minimis a quelques problems de statique relatits a larchitecture. Mémoires de l’Académie Royale des Sciences présentés par divers Savans, Paris 5, 7 (1776)

  2. Liu, F.Q.: Lateral earth pressures acting on circular retaining walls. Int. J. Geomech. 14(3), 04014002 (2014)

    Article  Google Scholar 

  3. Liu, F.Q., Wang, J.H.: A generalized slip line solution to the active earth pressure on circular retaining walls. Comput. Geotech. 35(2), 155–164 (2008)

    Article  Google Scholar 

  4. Liu, F.Q., Wang, J.H., Zhang, L.L.: Analytical solution of general axisymmetric active earth pressure. Int. J. Numer. Anal. Methods Geomech. 33(4), 551–565 (2009)

    Article  MATH  Google Scholar 

  5. Liu, F.Q., Wang, J.H., Zhang, L.L.: Axi-symmetric active earth pressure obtained by the slip line method with a general tangential stress coefficient. Comput. Geotech. 36(1–2), 352–358 (2009)

    Article  Google Scholar 

  6. Peng, M.X., Chen, J.: Slip-line solution to active earth pressure on retaining walls. Geotechnique 63(12), 1008–1019 (2013)

    Article  Google Scholar 

  7. Li, J.P., Wang, M.: Simplified method for calculating active earth pressure on rigid retaining walls considering the arching effect under translational mode. Int. J. Geomech. 14(2), 282–290 (2014)

    Article  Google Scholar 

  8. Paik, K.H., Salgado, R.: Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique 53(7), 643–653 (2003)

    Article  Google Scholar 

  9. Wang, Y.Z.: Distribution of earth pressure on a retaining wall. Geotechnique 52(3), 231–231 (2000)

    Article  MathSciNet  Google Scholar 

  10. Fang, Y., Ishibashi, I.: Static earth pressures with various wall movements. J. Geotech. Eng. 112(3), 317–333 (1986)

    Article  Google Scholar 

  11. Khosravi, M.H., Pipatpongsa, T., Takemura, J.: Experimental analysis of earth pressure against rigid retaining walls under translation mode. Geotechnique 63(12), 1020–1028 (2013)

    Article  Google Scholar 

  12. Herten, M., Pulsfort, M.: Determination of spatial earth pressure on circular shaft constructions. Granul. Matter. 2(1), 1–7 (1999)

    Article  Google Scholar 

  13. Chen, J.J., Lei, H., Wang, J.H.: Numerical analysis of the installation effect of diaphragm walls in saturated soft clay. Acta. Geotech. 9(6), 981–991 (2014)

    Article  Google Scholar 

  14. Loukidis, D., Salgado, R.: Active pressure on gravity walls supporting purely frictional soils. Can. Geotech. J. 49(1), 78–97 (2012)

    Article  Google Scholar 

  15. Potts, D.M., Fourie, A.B.: A numerical study of the effects of wall deformation on earth pressures. Int. J. Numer. Anal. Methods Geomech. 10(4), 383–405 (1986)

    Article  Google Scholar 

  16. Worden, F.T., Achmus, M.: Numerical modeling of three-dimensional active earth pressure acting on rigid walls. Comput. Geotech. 51, 83–90 (2013)

    Article  Google Scholar 

  17. Chevalier, B.G., Combe, G., Villard, P.: Experimental and discrete element modeling studies of the trapdoor problem: influence of the macro-mechanical frictional parameters. Acta Geotech. 7(1), 15–39 (2012)

    Article  Google Scholar 

  18. Gao, Y., Wang, Y.H.: Experimental and DEM examinations of \(\text{ K }_{0}\) in S and under different loading conditions. J. Geotech. Geoenviron. Eng. 140(5), 04014012 (2014)

    Article  Google Scholar 

  19. Mirghasemi, A.A., Javan, M.R.M.: Discrete element method analysis of retaining wall earth pressure in static and pseudo-static conditions. Iran. J. Sci. Technol. Trans. B Eng. 30(B1), 145–150 (2006)

    Google Scholar 

  20. Tran, V.D.H., Meguid, M.A., Chouinard, L.E.: Discrete element and experimental investigations of the earth pressure distribution on cylindrical shafts. Int. J. Geomech. 14(1), 80–91 (2014)

    Article  Google Scholar 

  21. Jiang, M.J., He, J., Wang, J.F., Liu, F., Zhang, W.C.: Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill. Granul. Matter. 16(5), 797–814 (2014)

    Article  Google Scholar 

  22. Zhang, J.M., Shamoto, Y., Tokimatsu, K.: Evaluation of earth pressure under any lateral deformation. Soils Found. 38(1), 15–33 (1998)

    Article  Google Scholar 

  23. Mei, G.X., Chen, Q.M., Song, L.H.: Model for predicting displacement-dependent lateral earth pressure. Can. Geotech. J. 46(8), 969–975 (2009)

    Article  Google Scholar 

  24. Chang, M.F.: Lateral earth pressures behind rotating walls. Can. Geotech. J. 34(4), 498–509 (1997)

    Article  Google Scholar 

  25. Chen, L.: Active earth pressure of retaining wall considering wall movement. Eur. J. Environ. Civil Eng. 18(8), 910–926 (2014)

    Article  Google Scholar 

  26. Rankine, W.J.M.: On the stability of loose earth. Philos. Trans. R. Soc. London 147(1), 9–27 (1857)

    Article  Google Scholar 

  27. Fan, C.C., Fang, Y.S.: Numerical solution of active earth pressures on rigid retaining walls built near rock faces. Comput. Geotech. 37(7–8), 1023–1029 (2010)

    Article  Google Scholar 

  28. Frydman, S., Keissar, I.: Earth pressure on retaining walls near rock faces. J. Geotech. Eng. 113(6), 586–599 (1987)

    Article  Google Scholar 

  29. Greco, V.: Active thrust on retaining walls of narrow backfill width. Comput. Geotech. 50, 66–78 (2013)

    Article  Google Scholar 

  30. O’Neal, T.S., Hagerty, D.J.: Earth pressures in confined cohesionless backfill against tall rigid walls: a case history. Can. Geotech. J. 48(8), 1188–1197 (2011)

    Article  Google Scholar 

  31. Qiu, G., Grabe, J.: Active earth pressure shielding in quay wall constructions: numerical modeling. Acta Geotech. 7(4), 343–355 (2012)

    Article  Google Scholar 

  32. Take, W.A., Valsangkar, A.J.: Earth pressures on unyielding retaining walls of narrow backfill width. Can. Geotech. J. 38(6), 1220–1230 (2001)

    Article  Google Scholar 

  33. Chen, J.J., Li, M.G., Wang, J.H.: Active earth pressure against rigid retaining walls subjected to confined cohesionless soil. Int. J. Geomech. (2017). doi:10.1061/(ASCE)GM.1943-5622.0000855

    Google Scholar 

  34. Itasca PFC2D-particle flow code. Version 3.0. Itasca Consulting Group Inc. (2002)

  35. Jiang, M.J., Yin, Z.Y.: Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method. Tunn. Undergr. Space Technol. 32, 251–259 (2012)

    Article  Google Scholar 

  36. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

  37. Jaky, J.: The coefficient of earth pressure at rest. J. Soc. Hung. Archit. Eng. 78(22), 355–358 (1944)

  38. Terzaghi, K.: Large retaining wall tests, Part I-V. Engineering News Record, vol. 112 (1934)

  39. Matsuo, M., Kenmochi, S., Yagi, H.: Experimental study on earth pressure of retaining wall by field tests. Soils Found. 18(3), 27–41 (1978)

    Article  Google Scholar 

  40. Fang, Y.S., Chen, J.M., Chen, C.Y.: Earth pressures with sloping backfill. J. Geotech. Geoenviron. Eng. 123(3), 250–259 (1997)

    Article  Google Scholar 

  41. Tobar, T., Meguid, M.A.: Experimental study of the earth pressure distribution on cylindrical shafts. J. Geotech. Geoenviron. Eng. 137(11), 1121–1125 (2011)

    Article  Google Scholar 

  42. Kim, K.Y., Lee, D.S., Cho, J., Jeong, S.S., Lee, S.: The effect of arching pressure on a vertical circular shaft. Tunn. Undergr. Space Technol. 37, 10–21 (2013)

    Article  Google Scholar 

  43. Janssen, H.A.: Versuche uber getreidedruck in silozellen. Zeitschrift, Verein Deutscher Ingenieure 39, 1045–1049 (partial English translation in Proceedings–Institution of Civil Engineers, 1986, 553) (1895)

  44. Zhu, J.M., Zhao, Q.: Unified solution to active earth pressure and passive earth pressure on retaining wall considering soil arching effects. Rock Soil Mech. 35(9), 2051–2056 (2014). (in Chinese)

    Google Scholar 

  45. Ying, H.W., Huang, D., Xie, Y.X.: Study of active earth pressure on retaining wall subject to translation mode considering lateral pressure on adjacent existing basement exterior wall. Chin. J. Rock Mech. Eng. 30(S1), 2970–2978 (2010). (in Chinese)

    Google Scholar 

  46. Handy, R.L.: The arch in soil arching. J. Geotech. Eng. 111(3), 302–318 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (NSFC Grant Nos. 41330633, 41472250 and 41602283) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, MG., Chen, JJ. & Wang, JH. Arching effect on lateral pressure of confined granular material: numerical and theoretical analysis. Granular Matter 19, 20 (2017). https://doi.org/10.1007/s10035-017-0700-2

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-017-0700-2

Keywords

Navigation