Skip to main content
Log in

Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Imipramine (IMP), a tricyclic antidepressant drug, is commonly prescribed for treatment of psychiatric patients suffering from different forms of depression. The appropriate amount of drug intake is crucial to ensure the optimum therapeutic effects minimizing severe collateral effects and toxicity. Therefore, the monitoring of imipramine is essential for its clinical applications. Herein, we report an electrochemical sensor based on a composite of ferrocenecarboxylic acid (FCA), β-cyclodextrin (CD), and oxidized multi-walled carbon nanotubes (f-CNT) modified glassy carbon electrode for detection of IMP at low potential. The electrochemical behavior of the proposed sensor was characterized by scanning electron microscopy, Raman spectroscopy, and cyclic voltammetry. The results show that imipramine determination using the proposed sensor occurs around 0 V vs Ag/AgCl in phosphate buffer pH 7.0. The calibration curves were obtained by cyclic voltammetry and differential pulse voltammetry, with linear ranges of 10 to 350 μmol L−1 and 0.1 to 10 μmol L−1, respectively. A detection limit of 0.03 μmol L−1 was obtained for the detection of IMP. The sensor was applied for IMP determination in psychotropic drugs and urine samples and the results show a recovery percentage between 99 and 101% for the analyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aksoy A, Erduran E, Gedik Y (2009) A case of imipramine-associated immune thrombocytopenia. Turkish J Pediatr 51:275–278

    Google Scholar 

  2. Kerr GW, McGuffie AC, Wilkie S (2001) Tricyclic antidepressant overdose: a review. Emerg Med J 18:236–241

    Article  CAS  Google Scholar 

  3. Soni P, Sar SK, Kamavisdar A, Patel R (2011) Simple and sensitive spectrophotometric method for determination of tricyclic antidepressant imipramine using Fe(III)-SCN-complex. J Anal Chem 66:596–599

    Article  CAS  Google Scholar 

  4. Yoshida H, Hidaka K, Ishida J, Yoshikuni K, Nohta H, Yamaguchi M (2000) Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column tris(2,2’-bipyridyl) ruthenium(III) chemiluminescence detection. Anal Chim Acta 413:137–145

    Article  CAS  Google Scholar 

  5. Bose D, Martinavarro-Dominguez A, Gil-Agusti M, Carda-Broch S, Durgbanshi A, Capella-Peiro ME, Esteve-Romero J (2005) Therapeutic monitoring of imipramine and desipramine by micellar liquid chromatography with direct injection and electrochemical detection. Biomed Chromatogr 19:343–349

    Article  CAS  Google Scholar 

  6. Lin CN, Juenke JM, Johnson-Davis KL (2014) Method validation of a tricyclic antidepressant drug panel in urine by UPLC-MS/MS. Ann Clin Lab Sci 44:431–436

    CAS  Google Scholar 

  7. Varley CK, McClellan J (1997) Case study: two additional sudden deaths with tricyclic antidepressants. J Am Acad Child Psychiatry 36:390–394

    Article  CAS  Google Scholar 

  8. Melanson SE, Lewandrowski EL, Griggs DA, Flood JG (2007) Interpreting tricyclic antidepressant measurements in urine in an mergency department setting: comparison of two qualitative point-of-care urine tricyclic antidepressant drug immunoassays with quantitative serum chromatographic analysis. J Anal Toxicol 31:270–275

    Article  CAS  Google Scholar 

  9. Zhao J, Shin Y, Chun K-H, Yoon HR, Lee J (2016) A simple, rapid and reliable method to determine imipramine and desipramine in mouse serum using ultra-high-performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. J Chromatogr Sci 54:561–568

    Article  CAS  Google Scholar 

  10. Shamsipur M, Mirmohammadi M (2014) High performance liquid chromatographic determination of ultratraces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid–liquid microextraction coupled with response surface optimization. J Pharm Biomed Anal 100:271–278

    Article  CAS  Google Scholar 

  11. Sasajima Y, Lim LW, Takeuchi T, Suenami K, Sato K, Takekoshi Y (2010) Simultaneous determination of antidepressants by non-aqueous capillary electrophoresis-time of flight mass spectrometry. J Chromatogr A 1217:7598–7604

    Article  CAS  Google Scholar 

  12. Yu C, Hongwei D, You T (2011) Determination of imipramine and trimipramine by capillary electrophoresis with electrochemiluminescence detection. Talanta 83:1376–1380

    Article  CAS  Google Scholar 

  13. Flores JR, Nevado JJB, Salcedo AMC, Díaz MPC (2005) Nonaqueous capillary electrophoresis method for the analysis of tamoxifen, imipramine and their main metabolites in urine. Talanta 65:155–162

    Article  CAS  Google Scholar 

  14. El Zeany BS, Moustafa AA, Farid NF (2003) Determination of imipramine in presence of iminodibenzyl and in pharmaceutical dosage form. J Pharm Biomed Anal 33:775–782

    Article  Google Scholar 

  15. Starczewska B (2000) Spectrophotometric studies and application of imipramine–eriochrome cyanine R system for determination of imipramine in pharmaceuticals. J Pharm Biomed Anal 23:383–386

    Article  CAS  Google Scholar 

  16. Misiuk W (2000) Spectrophotometry assay of imipramine and desipramine using ammonium metavanadate and its application to pharmaceutical preparations. J Pharm Biomed Anal 22:189–196

    Article  CAS  Google Scholar 

  17. Pommier F, Sioufi A, Godbillon J (1997) Simultaneous determination of imipramine and its metabolite desipramine in human plasma by capillary gas chromatography with mass-selective detection. J Chromatogr B Biomed Sci Appl 703:147–158

    Article  CAS  Google Scholar 

  18. Xu R, Lee HK (2014) Application of electro-enhanced solid phase microextraction combined with gas chromatography–mass spectrometry for the determination of tricyclic antidepressants in environmental water samples. J Chromatogr A1350:15–22

    Article  Google Scholar 

  19. Oliveira SN, Ribeiro FWP, Sousa CP, Soares JES, Suffredini HBS, Becker H, Lima-Neto P, Correia NA (2017) Imipramine sensing in pharmaceutical formulations using boron-doped diamond electrode. J Electroanal Chem 788:118–124

    Article  CAS  Google Scholar 

  20. Ferancová A, Korgová E, Mikó R, Labuda J (2000) Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J Electroanal Chem 492:74–77

    Article  Google Scholar 

  21. Oliveira AX, Silva SM, Leite FRF, Kubota LT, Damos FS, Luz RCS (2013) Highly sensitive and selective basal plane pyrolytic graphite electrode modified with 1, 4-naphthoquinone/MWCNT for simultaneous determination of dopamine, ascorbate and urate. Electroanalysis 25:723–731

    Article  CAS  Google Scholar 

  22. Ribeiro IAL, Yotsumoto-Neto S, dos Santos WT, Fernandes RN, Goulart MO, Damos FS, Luz RCS (2017) Improved NADH electroanalysis on nickel (II) phthalocyanine tetrasulfonic acid/calf thymus deoxyribonucleic acid/reduced graphene oxide composite. J Braz Chem Soc 28:1768–1778

    CAS  Google Scholar 

  23. Silva SM, Oliveira FM, Justino DD, Kubota LT, Tanaka AA, Damos FS, Luz RCS (2014) A novel sensor based on manganese azo-macrocycle/carbon nanotubes to perform the oxidation and reduction processes of two diphenol isomers. Electroanalysis 26:602–611

    Article  CAS  Google Scholar 

  24. Xu X, Zhou G, Li H, Liu Q, Zhang S, Kong J (2009) A novel molecularly imprinted sensor for selectively probing imipramine created on ITO electrodes modified by Au nanoparticles. Talanta 78:26–32

    Article  CAS  Google Scholar 

  25. Safavi A, Banazadeh A, Sedaghati F (2013) Synthesis of palladium nanoparticles on organically modified silica: application to design of a solid-state electrochemiluminescence sensor for highly sensitive determination of imipramine. Anal Chim Acta 796:115–121

    Article  CAS  Google Scholar 

  26. Jankowska-Śliwińska J, Dawgul M, Pijanowska DG (2015) DNA-based electrochemical biosensor for imipramine detection. Procedia Eng 120:574–577

    Article  Google Scholar 

  27. Norouzi P, Ganjali MR, Akbari-Adergani B (2006) Sub-second FFT continuous tripping cyclic voltammetric technique as a novel method for pico-level monitoring of imipramine at Au microelectrode in flowing solutions. Acta Chim Slov 53:499–505

    CAS  Google Scholar 

  28. Eslami E, Farjami F, Aberoomand AP, Saber TM (2014) Adsorptive stripping voltammetric determination of imipramine and amitriptiline at a nanoclay composite carbon ionic liquid electrode. Electroanalysis 26:424–431

    Article  CAS  Google Scholar 

  29. Ivandini TA, Sarada BV, Terashima C, Rao TN, Tryk DA, Ishiguro H, Fujishima A (2002) Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. J Electroanal Chem 521:117–126

    Article  CAS  Google Scholar 

  30. de Toledo RA, Santos MC, Shim H, Mazo LH (2015) Electroanalytical determination of imipramine in reconstituted serum with a graphite-polyurethane composite electrode. Int J Electrochem Sci 10:6975–6985

    Google Scholar 

  31. Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138:1395–1404

    Article  CAS  Google Scholar 

  32. Guorong Z, Xiaolei W, Xingwang S, Tianling S (2000) β-Cyclodextrin–ferrocene inclusion complex modified carbon paste electrode for amperometric determination of ascorbic acid. Talanta 51:1019–1025

    Article  CAS  Google Scholar 

  33. Zanin H, May PW, Lobo AO, Saito E, Machado JPB, Martins G, Corat EJ (2014) Effect of multi-walled carbon nanotubes incorporation on the structure, optical and electrochemical properties of diamond-like carbon thin films. J Electrochem Soc 161:H290–H295

    Article  CAS  Google Scholar 

  34. Zanin H, Margraf-Ferreira A, Da Silva NS, Marciano FR, Corat EJ, Lobo AO (2014) Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease. Mater Sci Eng C 41:65–69

    Article  CAS  Google Scholar 

  35. Moreira JVS, Corat EJ, May PW, Cardoso LDR, Lelis PA, Zanin H (2016) Freestanding aligned multi-walled carbon nanotubes for supercapacitor devices. J Electron Mater 45:5781–5788

    Article  CAS  Google Scholar 

  36. Spinola RF, Zanin H, Macena CS, Contin A, Luz RCS, Damos FS (2017) Evaluation of a novel composite based on functionalized multi-walled carbon nanotube and iron phthalocyanine for electroanalytical determination of isoniazid. J Solid State Electrochem 21:1089–1099

    Article  Google Scholar 

  37. Antunes EF, Lobo AO, Corat EJ, Trava-Airoldi VJ, Martin AA, Verissimo C (2006) Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation. Carbon 44:2202–2211

    Article  CAS  Google Scholar 

  38. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2006) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10:751–758

    Article  Google Scholar 

  39. Chen L, Song Y, Hu P, Deming CP, Guo Y, Chen S (2014) Interfacial reactivity of ruthenium nanoparticles protected by ferrocenecarboxylates. Phys Chem Chem Phys 16:18736–18742

    Article  CAS  Google Scholar 

  40. Qiu J-D, Zhou W-M, Guo J, Wang R, Liang R-P (2009) Amperometric sensor based on ferrocene-modified multiwalled carbon nanotube nanocomposites as electron mediator for the determination of glucose. Anal Biochem 385:264–269

    Article  CAS  Google Scholar 

  41. Guan L, Shi Z, Li M, Gu Z (2005) Ferrocene-filled single-walled carbon nanotubes. Carbon 43:2780–2785

    Article  CAS  Google Scholar 

  42. Egyed O, Weiszfeiler V (1994) Structure determination of copper(II)-β-cyclodextrin complex by Fourier transform infrared spectroscopy. Vib Spectrosc 7:73–77

    Article  CAS  Google Scholar 

  43. Rojas-Mena AR, López-González H, Rojas-Hernández A (2015) Preparation and characterization of holmium-beta-cyclodextrin complex. Adv Mater Phys Chem 5:87–94

    Article  CAS  Google Scholar 

  44. Egyed O (1990) Spectroscopic studies on β-cyclodextrin. Vib Spectrosc 1:225–227

    Article  CAS  Google Scholar 

  45. Chambers G, Carroll C, Farrell GF, Dalton AB, McNamara M, Panhuis M, Byrne HJ (2003) Characterization of the interaction of gamma cyclodextrin with single-walled carbon nanotubes. Nano Lett 3:843–846

    Article  CAS  Google Scholar 

  46. Chen J, Dyer MJ, Yu MF (2001) Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J Am Chem Soc 123:6201–6202

    Article  CAS  Google Scholar 

  47. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101:19–28

    Article  CAS  Google Scholar 

  48. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. John Wiley & Sons

  49. Nurzulaikha R, Lim HN, Harrison I, Lim SS, Pandikumar A, Huang NM, Ibrahim I (2015) Graphene/SnO2 nanocomposite-modified electrode for electrochemical detection of dopamine. Sens Biosensing Res 5:42–49

    Article  Google Scholar 

  50. Gowda JI, Nandibewoor ST (2014) Electrochemical behavior of paclitaxel and its determination at glassy carbon electrode. Asian J Pharmacol 9:42–49

    Google Scholar 

  51. Arduini F, Cassisi A, Amine A, Ricci F, Moscone D, Palleschi G (2009) Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. J Electroanal Chem 626:66–74

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to CNPq (303525/2016-9, 305680/2015-3, 301486/2016-6, and 401689/2015-8), INCT-Bioanalítica (465389/2014-7), FAPEMA (Universal 00927/2016 and PRONEM 210383/2016), and FAPESP (2014/02163-7) for financial support. AGSN, CSS, and SMS are scholarship students from CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita de Cássia Silva Luz.

Electronic supplementary material

ESM 1

(DOCX 220 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Neto, A.G., de Sousa, C.S., da Silva Freires, A. et al. Electrochemical sensor for detection of imipramine antidepressant at low potential based on oxidized carbon nanotubes, ferrocenecarboxylic acid, and cyclodextrin: application in psychotropic drugs and urine samples. J Solid State Electrochem 22, 1385–1394 (2018). https://doi.org/10.1007/s10008-017-3772-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3772-3

Keywords

Navigation