Skip to main content
Log in

Roughness length for heat over an urban canopy

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The roughness length for heat zT was evaluated over an urban canopy, using the measured sensible heat flux and radiometric temperature. To overcome thermal heterogeneity in the urban area, the measured radiometric temperature was transformed into the equivalent temperature of an upward longwave radiation flux. The equivalent temperature was found to provide an effective parameterization of the radiometric temperature. The daytime average of the resulting ln(zT/z0) was 10, where z0 is the aerodynamic roughness length. This result generally agrees with previous studies; however, the anthropogenic heat is a large uncertainty, which could cause an error at least 240% in zT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnfield AJ (1982) An approach to the estimation of the surface radiative properties and radiation budgets of cities. Phys Geogr 3:97–122

    Google Scholar 

  • Brutsaert W (1982) Evaporation into the atmosphere. Reidel, Boston, MA, 299 pp

  • Brutsaert W, Sugita M (1996) Sensible heat transfer parameterization for surfaces with anisothermal dense vegetation. J Atmos Sci 53:209–216

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 32:205–236

    Google Scholar 

  • Grimmond CSB, Oke TR (1999) Heat storage in urban areas: local-scale observations and evaluation of a simple model. J Appl Meteorol 38:922-940

    Google Scholar 

  • Hagishima A, Tanimoto J, Narita K (2005) Intercomparisons of researches on experimental convective heat transfer coefficients and mass transfer coefficients of urban surfaces. Bound-Layer Meteorol 117:551–576

    Article  Google Scholar 

  • Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Env 33:3897–3909

    Article  Google Scholar 

  • Johnson GT, Watson ID (1984) The determination of view-factors in urban canyons. J Climate Appl Meteorol 23:329–335

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Roth M, Oke T (2002) Area-averaged sensible heat flux and a new method to determine zero-plane displacement length over an urban surface using scintillometry. Bound-Layer Meteorol 105:177–193

    Article  Google Scholar 

  • Kanda M, Kanega M, Kawai T, Moriwaki R, Sugawara H (2007) Roughness lengths for momentum and heat derived from outdoor urban-scale models. J Appl Meteorol Clim 46:1067–1079

    Article  Google Scholar 

  • Kikegawa Y, Genchi Y, Kondo H (2005) Impacts of the component patterns of air conditioning system and power supply system in buildings upon urban thermal environment in summer. Environ Sys Res 33:189–197

    Google Scholar 

  • Kim YH, Baik JJ (2005) Spatial and temporal structure of the urban heat island in Seoul. J Appl Meteorol 44:591–605

    Article  Google Scholar 

  • Kneizys FX, Shettle EP, Abreu LW, Chetwynd Jr JH, Anderson GP, Gallery WO, Selby JEA, Clough SA (1988) User’s guide to LOWTRAN 7. Air Force Geophysics Laboratory Report, No. AFGL-TR-88–017, Air Force Geophysics Lab, Hanscom, MA, USA

  • Kondo H, Arisawa Y, Uno I, Ogata K, Kimura F, Saito A, Suzuki M, Takahashi S, Nakanishi M, Nakano Y, Mizuno T, Yasuraoka A, Yoshikado H, Liu FH, Wakamuatsu S (1994) Inter-conparison of the local circulation models: sea breeze cases (in Japanese). Tenki 41:751–760

    Google Scholar 

  • Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound-Layer Meteorol 101:329–358

    Article  Google Scholar 

  • Macdonald RR, Griffiths RF, Hall DJ (1998) An improved method for estimation of surface roughness of obstacle arrays. Atmos Environ 32:1857–1864

    Article  Google Scholar 

  • Masson V (2000) A physically-based scheme for the urban energy budget in atmospheric models. Bound-Layer Meteorol 94:357–397

    Article  Google Scholar 

  • Matsushima D, Kondo J (1997) A proper method for estimating sensible heat flux above a horizontal–homogeneous vegetation canopy using radiometric surface observations. J Appl Meteorol 36:1696–1711

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor, and carbon dioxide over a suburban area. J Appl Meteorol 43:1700–1710

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Scalar roughness parameters for a suburban area. J Meteorol Soc Japan 84:1063–1071

    Article  Google Scholar 

  • Narita K (2007) Experimental study of the transfer velocity for urban surfaces with a water evaporation method. Bound-Layer Meteorol 122:293–320

    Article  Google Scholar 

  • Schmid HP (1994) Source area for scalars and scalar fluxes. Bound-Layer Meteorol 67:293–318

    Article  Google Scholar 

  • Shepherd JM, Pierce H, Negri AJ (2002) Rainfall modification by major urban areas: observations from spaceborne rain radar on the TRMM satellite. J Appl Meteorol 41:689–701

    Article  Google Scholar 

  • Sugawara H (2001) Heat exchange between urban structures and the atmospheric boundary layer. PhD Thesis, Tohoku Univ., Aoba-ku, Sendai, Japan, 140 pp

  • Sugawara H, Takamura T (2006) Longwave radiation flux from an urban canopy: Evaluation via measurements of directional radiometric temperature. Rem Sens Environ 104:226–237

    Article  Google Scholar 

  • Sugawara H, Narita K, Mikami T (2001) Estimation of effective thermal property parameter on a heterogeneous urban surface. J Meteorol Soc Japan 79:1169–1181

    Article  Google Scholar 

  • Sun L, Mahrt L (1995) Determination of surface fluxes from the surface radiative temperature. J Atmos Sci 52:1096–1106

    Article  Google Scholar 

  • Takahashi T, Sekine K, Iwata T, Osaka T, Fukuwaki S (1981) Roughness parameter over Ogaki city (in Japanese). Geogr Rev Japan 54:579–594

    Google Scholar 

  • Troufleau D, Lhomme JP, Montery B, Vidal A (1997) Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation I: an experimental analysis of the KB-1 parameter. J Hydrol 188–189:815–838

    Article  Google Scholar 

  • Voogt JA, Grimmond CSB (2000) Modeling surface sensible heat flux using surface radiative temperatures in a simple urban area. J Appl Meteorol 39:1679–1699

    Google Scholar 

  • Voogt JA, Oke TR (1997) Complete urban surface temperature. J Appl Meteorol 36:1117–1132

    Article  Google Scholar 

  • Voogt JA, Oke TR (1998) Effects of urban surface geometry on remotely-sensed surface temperature. Int J Rem Sens 19:895–920

    Article  Google Scholar 

  • Yoshikado H (1990) Vertical structure of the sea breeze penetrating through a large urban complex. J Appl Meteorol 29:878–891

    Article  Google Scholar 

  • Yoshikado H (1992) Numerical study of the daytime urban effect and its interaction with the sea breeze. J Appl Meteorol 31:1146–1164

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Mikami (Tokyo Metropolitan Univ., Japan) and Dr. Ushiyama (Tohoku Univ., Japan) for their great effort in the observations, and Dr. Ichinose (National Institute of Environmental Studies Japan) for providing the anthropogenic heat data. The Tokyo metropolitan government facilitated these observations, and the Japan Ground Self-Defense Force supported the airborne observation. This study was financially supported by Core Research for Evolutional Science and Technology of The Japan Science and Technology Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Sugawara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugawara, H., Narita, Ki. Roughness length for heat over an urban canopy. Theor Appl Climatol 95, 291–299 (2009). https://doi.org/10.1007/s00704-008-0007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-008-0007-7

Keywords

Navigation