Skip to main content

Advertisement

Log in

Renal repair: role of bone marrow stem cells

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Acute kidney injury carries severe consequences and has limited treatment options. Bone marrow stem cells may offer the potential for treatment of acute kidney injury. The purpose of this review is twofold. The first purpose is to provide a concise overview of the biology of bone marrow stem cells, including hematopoietic stem cells and mesenchymal stem cells, for clinical nephrologists and renal researchers. The second purpose is to summarize published data regarding the role of bone marrow stem cells in renal repair after acute kidney injury. Currently, much of our knowledge of renal protective effect of bone marrow stem cells is obtained through animal research. Our goal is to understand the mechanism of renal protection by bone marrow stem cells and to develop strategies utilizing these stem cells for the eventual treatment of humans with kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Reference

  1. Till JE, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222

    Article  CAS  PubMed  Google Scholar 

  2. Siminovitch L, McCulloch EA, Till JE (1963) The Distribution of Colony-Forming Cells among Spleen Colonies. J Cell Physiol 62:327–336

    Article  CAS  Google Scholar 

  3. McCulloch EA, Till JE (2005) Perspectives on the properties of stem cells. Nat Med 11(10):1026–1028

    Article  CAS  PubMed  Google Scholar 

  4. Spangrude GJ, Heimfeld S, Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241(4861):58–62

    Article  CAS  PubMed  Google Scholar 

  5. Ikuta K, Weissman IL (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89(4):1502–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhong JF, Zhao Y, Sutton S, Su A, Zhan Y, Zhu L, Yan C, Gallaher T, Johnston PB, Anderson WF, Cooke MP (2005) Gene expression profile of murine long-term reconstituting vs. short-term reconstituting hematopoietic stem cells. Proc Natl Acad Sci USA 102(7):2448–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison DE, Stone M, Astle CM (1990) Effects of transplantation on the primitive immunohematopoietic stem cell. J Exp Med 172(2):431–437

    Article  CAS  PubMed  Google Scholar 

  8. Uchida N, Jerabek L, Weissman IL (1996) Searching for hematopoietic stem cells. II. The heterogeneity of Thy-1.1(lo)Lin(-/lo)Sca-1+ mouse hematopoietic stem cells separated by counterflow centrifugal elutriation. Exp Hematol 24(5):649–659

    CAS  PubMed  Google Scholar 

  9. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133(1):157–165

    CAS  PubMed  Google Scholar 

  10. Sato T, Laver JH, Ogawa M (1999) Reversible expression of CD34 by murine hematopoietic stem cells. Blood 94(8):2548–2554

    Article  CAS  PubMed  Google Scholar 

  11. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  CAS  PubMed  Google Scholar 

  12. Wolf NS, Kone A, Priestley GV, Bartelmez SH (1993) In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342- rhodamine 123 FACS selection. Exp Hematol 21(5):614–622

    CAS  PubMed  Google Scholar 

  13. Dzierzak E, Medvinsky A (1995) Mouse embryonic hematopoiesis. Trends Genet 11(9):359–366

    Article  CAS  PubMed  Google Scholar 

  14. Durand C, Dzierzak E (2005) Embryonic beginnings of adult hematopoietic stem cells. Haematologica 90(1):100–108

    PubMed  Google Scholar 

  15. Dzierzak E (2005) The emergence of definitive hematopoietic stem cells in the mammal. Curr Opin Hematol 12(3):197–202

    Article  PubMed  Google Scholar 

  16. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE (2006) The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107(6):2311–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muller-Sieburg CE, Sieburg HB (2006) Clonal diversity of the stem cell compartment. Curr Opin Hematol 13(4):243–248

    Article  PubMed  Google Scholar 

  18. Quesenberry PJ (2006) The continuum model of marrow stem cell regulation. Curr Opin Hematol 13(4):216–221

    Article  CAS  PubMed  Google Scholar 

  19. Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192(9):1273–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106(4):1479–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abkowitz JL, Catlin SN, Guttorp P (1996) Evidence that hematopoiesis may be a stochastic process in vivo. Nat Med 2(2):190–197

    Article  CAS  PubMed  Google Scholar 

  22. Blackett N, Gordon M (1999) "Stochastic" -40 years of use and abuse. Blood 93(9):3148–3149

    Article  CAS  PubMed  Google Scholar 

  23. Metcalf D (1998) Lineage commitment and maturation in hematopoietic cells: the case for extrinsic regulation. Blood 92(2):345–347; discussion 352

    Article  CAS  PubMed  Google Scholar 

  24. Phillips RL, Ernst RE, Brunk B, Ivanova N, Mahan MA, Deanehan JK, Moore KA, Overton GC, Lemischka IR (2000) The genetic program of hematopoietic stem cells. Science 288(5471):1635–1640

    Article  CAS  PubMed  Google Scholar 

  25. Park IK, He Y, Lin F, Laerum OD, Tian Q, Bumgarner R, Klug CA, Li K, Kuhr C, Doyle MJ, Xie T, Schummer M, Sun Y, Goldsmith A, Clarke MF, Weissman IL, Hood L, Li L (2002) Differential gene expression profiling of adult murine hematopoietic stem cells. Blood 99(2):488–498

    Article  CAS  PubMed  Google Scholar 

  26. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  27. Wineman J, Moore K, Lemischka I, Muller-Sieburg C (1996) Functional heterogeneity of the hematopoietic microenvironment: rare stromal elements maintain long-term repopulating stem cells. Blood 87(10):4082–4090

    Article  CAS  PubMed  Google Scholar 

  28. Wineman JP, Nishikawa S, Muller-Sieburg CE (1993) Maintenance of high levels of pluripotent hematopoietic stem cells in vitro: effect of stromal cells and c-kit. Blood 81(2):365–372

    Article  CAS  PubMed  Google Scholar 

  29. Lin H, Spradling AC (1997) A novel group of pumilio mutations affects the asymmetric division of germline stem cells in the Drosophila ovary. Development 124(12):2463–2476

    Article  CAS  PubMed  Google Scholar 

  30. Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290(5490):328–330

    Article  CAS  PubMed  Google Scholar 

  31. Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294(5551):2542–2545

    Article  CAS  PubMed  Google Scholar 

  32. Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci USA 100(Suppl 1):11830–11835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kopan R, Lee J, Lin MH, Syder AJ, Kesterson J, Crutchfield N, Li CR, Wu W, Books J, Gordon JI (2002) Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Dev Biol 242(1):44–57

    Article  CAS  PubMed  Google Scholar 

  34. Marshman E, Booth C, Potten CS (2002) The intestinal epithelial stem cell. Bioessays 24(1):91–98

    Article  PubMed  Google Scholar 

  35. Nishimura EK, Jordan SA, Oshima H, Yoshida H, Osawa M, Moriyama M, Jackson IJ, Barrandon Y, Miyachi Y, Nishikawa S (2002) Dominant role of the niche in melanocyte stem-cell fate determination. Nature 416(6883):854–860

    Article  CAS  PubMed  Google Scholar 

  36. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  CAS  PubMed  Google Scholar 

  37. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  CAS  PubMed  Google Scholar 

  38. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC, Kos CH, Pollak MR, Brown EM, Scadden DT (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076):599–603

    Article  CAS  PubMed  Google Scholar 

  39. Kopp HG, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) 20:349–356

    CAS  Google Scholar 

  40. Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121

    Article  CAS  PubMed  Google Scholar 

  41. Chute JP (2006) Stem cell homing. Curr Opin Hematol 13(6):399–406

    Article  PubMed  Google Scholar 

  42. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczorek A, Ratajczak J, Ratajczak MZ (2005) Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23(7):879–894

    Article  CAS  PubMed  Google Scholar 

  43. Lapidot T, Dar A, Kollet O (2005) How do stem cells find their way home? Blood 106(6):1901–1910

    Article  CAS  PubMed  Google Scholar 

  44. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS (1995) The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 92(21):9647–9651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bonig H, Priestley GV, Papayannopoulou T (2006) Hierarchy of molecular-pathway usage in bone marrow homing and its shift by cytokines. Blood 107(1):79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Grignani G, Perissinotto E, Cavalloni G, Carnevale Schianca F, Aglietta M (2005) Clinical use of AMD3100 to mobilize CD34+ cells in patients affected by non-Hodgkin’s lymphoma or multiple myeloma. J Clin Oncol 23(16):3871–3872; author reply 3872–3873

    Article  PubMed  Google Scholar 

  47. Devine SM, Flomenberg N, Vesole DH, Liesveld J, Weisdorf D, Badel K, Calandra G, DiPersio JF (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22(6):1095–1102

    Article  CAS  PubMed  Google Scholar 

  48. Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR, Labrecque J, Lau G, Mosi RM, Nelson KL, Qin L, Santucci Z, Wong RS (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72(5):588–596

    Article  CAS  PubMed  Google Scholar 

  49. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  50. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276(5309):71–74

    Article  CAS  PubMed  Google Scholar 

  51. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17(4):331–340

    Article  CAS  PubMed  Google Scholar 

  52. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274

    CAS  PubMed  Google Scholar 

  53. Keating A, Singer JW, Killen PD, Striker GE, Salo AC, Sanders J, Thomas ED, Thorning D, Fialkow PJ (1982) Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature 298(5871):280–283

    Article  CAS  PubMed  Google Scholar 

  54. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sarugaser R, Lickorish D, Baksh D, Hosseini MM, Davies JE (2005) Human umbilical cord perivascular (HUCPV) cells: a source of mesenchymal progenitors. Stem Cells 23(2):220–229

    Article  PubMed  Google Scholar 

  56. Shih DT, Lee DC, Chen SC, Tsai RY, Huang CT, Tsai CC, Shen EY, Chiu WT (2005) Isolation and characterization of neurogenic mesenchymal stem cells in human scalp tissue. Stem Cells 23(7):1012–1020

    Article  CAS  PubMed  Google Scholar 

  57. In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345

    Article  PubMed  Google Scholar 

  58. in ’t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88(8):845–852

    PubMed  Google Scholar 

  59. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100(10):5807–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 7(5):393–395

    Article  CAS  PubMed  Google Scholar 

  61. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  62. Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S (2007) Neuroepithelial cells supply an initial transient wave of MSC differentiation. Cell 129(7):1377–1388

    Article  CAS  PubMed  Google Scholar 

  63. Dexter TM, Simmons P, Purnell RA, Spooncer E, Schofield R (1984) The regulation of hemopoietic cell development by the stromal cell environment and diffusible regulatory molecules. Prog Clin Biol Res 148:13–33

    CAS  PubMed  Google Scholar 

  64. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA 92(11):4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20(6):530–541

    Article  PubMed  Google Scholar 

  66. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ (2002) In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci USA 99(7):4397–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gregory CA, Singh H, Perry AS, Prockop DJ (2003) The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 278(30):28067–28078

    Article  CAS  PubMed  Google Scholar 

  68. Beyer Nardi N, da Silva Meirelles L (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol (174):249–282

  69. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105(12):1663–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jori FP, Napolitano MA, Melone MA, Cipollaro M, Cascino A, Altucci L, Peluso G, Giordano A, Galderisi U (2005) Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J Cell Biochem 94(4):645–655

    Article  CAS  PubMed  Google Scholar 

  71. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103(5):697–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49

    Article  CAS  PubMed  Google Scholar 

  74. Check E (2007) Stem cells: the hard copy. Nature 446(7135):485–486

    Article  CAS  PubMed  Google Scholar 

  75. Giordano A, Galderisi U, Marino IR (2007) From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 211(1):27–35

    Article  CAS  PubMed  Google Scholar 

  76. Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95

    Article  PubMed  Google Scholar 

  77. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT, Rossi MI, Carvalho AC, Dutra HS, Dohmann HJ, Silva GV, Belem L, Vivacqua R, Rangel FO, Esporcatte R, Geng YJ, Vaughn WK, Assad JA, Mesquita ET, Willerson JT (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107(18):2294–2302

    Article  PubMed  Google Scholar 

  78. Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918

    Article  PubMed  Google Scholar 

  79. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser A, Drexler H (2004) Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364(9429):141–148

    Article  PubMed  Google Scholar 

  80. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pyeritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5(3):309–313

    Article  CAS  PubMed  Google Scholar 

  81. Horwitz EM, Prockop DJ, Gordon PL, Koo WW, Fitzpatrick LA, Neel MD, McCarville ME, Orchard PJ, Pyeritz RE, Brenner MK (2001) Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood 97(5):1227–1231

    Article  CAS  PubMed  Google Scholar 

  82. Mazzini L, Fagioli F, Boccaletti R, Mareschi K, Oliveri G, Olivieri C, Pastore I, Marasso R, Madon E (2003) Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph Lateral Scler Other Motor Neuron Disord 4(3):158–161

    Article  PubMed  Google Scholar 

  83. Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transplant 30(4):215–222

    Article  CAS  PubMed  Google Scholar 

  84. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815–1822

    Article  CAS  PubMed  Google Scholar 

  85. Koc ON, Lazarus HM (2001) Mesenchymal stem cells: heading into the clinic. Bone Marrow Transplant 27(3):235–239

    Article  CAS  PubMed  Google Scholar 

  86. Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7(1):36–45

    Article  PubMed  Google Scholar 

  87. Lazarus HM, Koc ON, Devine SM, Curtin P, Maziarz RT, Holland HK, Shpall EJ, McCarthy P, Atkinson K, Cooper BW, Gerson SL, Laughlin MJ, Loberiza FR Jr, Moseley AB, Bacigalupo A (2005) Cotransplantation of HLA-identical sibling culture-expanded mesenchymal stem cells and hematopoietic stem cells in hematologic malignancy patients. Biol Blood Marrow Transplant 11(5):389–398

    Article  PubMed  Google Scholar 

  88. Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114(1):5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bonventre JV (1993) Mechanisms of ischemic acute renal failure. Kidney Int 43(5):1160–1178

    Article  CAS  PubMed  Google Scholar 

  90. Bonventre JV, Zuk A (2004) Ischemic acute renal failure: an inflammatory disease? Kidney Int 66(2):480–485

    Article  CAS  PubMed  Google Scholar 

  91. Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66(2):486–491

    Article  PubMed  Google Scholar 

  92. Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90(2):133–138

    Article  CAS  PubMed  Google Scholar 

  93. Caldwell CC, Okaya T, Martignoni A, Husted T, Schuster R, Lentsch AB (2005) Divergent functions of CD4+ T lymphocytes in acute liver inflammation and injury after ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 289(5):G969–976

    Article  CAS  PubMed  Google Scholar 

  94. Park P, Haas M, Cunningham PN, Bao L, Alexander JJ, Quigg RJ (2002) Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol 282(2):F352–357

    Article  PubMed  Google Scholar 

  95. Kale S, Karihaloo A, Clark PR, Kashgarian M, Krause DS, Cantley LG (2003) Bone marrow stem cells contribute to repair of the ischemically injured renal tubule. J Clin Invest 112(1):42–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Togel F, Isaac J, Westenfelder C (2004) Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 15(5):1261–1267

    Article  PubMed  Google Scholar 

  97. Lin F, Cordes K, Li L, Hood L, Couser WG, Shankland SJ, Igarashi P (2003) Hematopoietic stem cells contribute to the regeneration of renal tubules after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 14(5):1188–1199

    Article  PubMed  Google Scholar 

  98. Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115(7):1756–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duffield JS, Bonventre JV (2005) Kidney tubular epithelium is restored without replacement with bone marrow-derived cells during repair after ischemic injury. Kidney Int 68(5):1956–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Togel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289(1):F31–42

    Article  PubMed  CAS  Google Scholar 

  101. Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15(7):1794–1804

    Article  PubMed  Google Scholar 

  102. Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q (2004) The renal papilla is a niche for adult kidney stem cells. J Clin Invest 114(6):795–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115(7):1743–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Loef BG, Epema AH, Smilde TD, Henning RH, Ebels T, Navis G, Stegeman CA (2005) Immediate postoperative renal function deterioration in cardiac surgical patients predicts in-hospital mortality and long-term survival. J Am Soc Nephrol 16(1):195–200

    Article  PubMed  Google Scholar 

  105. Liano F, Pascual J (1998) Outcomes in acute renal failure. Semin Nephrol 18(5):541–550

    CAS  PubMed  Google Scholar 

  106. O’Donnell MP, Burne M, Daniels F, Rabb H (2002) Utility and limitations of serum creatinine as a measure of renal function in experimental renal ischemia-reperfusion injury. Transplantation 73(11):1841–1844

    Article  PubMed  Google Scholar 

  107. Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281(5):F887–899

    Article  CAS  PubMed  Google Scholar 

  108. Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP (2007) Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol 293(1):F269–278

    Article  CAS  PubMed  Google Scholar 

  109. Askenazi DJ, Feig DI, Graham NM, Hui-Stickle S, Goldstein SL (2006) 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int 69(1):184–189

    Article  CAS  PubMed  Google Scholar 

  110. Ianus A, Holz GG, Theise ND, Hussain MA (2003) In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J Clin Invest 111(6):843–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Jang YY, Collector MI, Baylin SB, Diehl AM, Sharkis SJ (2004) Hematopoietic stem cells convert into liver cells within days without fusion. Nat Cell Biol 6(6):532–539

    Article  CAS  PubMed  Google Scholar 

  112. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705

    Article  CAS  PubMed  Google Scholar 

  113. Poulsom R, Forbes SJ, Hodivala-Dilke K, Ryan E, Wyles S, Navaratnarasah S, Jeffery R, Hunt T, Alison M, Cook T, Pusey C, Wright NA (2001) Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol 195(2):229–235

    Article  CAS  PubMed  Google Scholar 

  114. Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12(12):2625–2635

    Article  CAS  PubMed  Google Scholar 

  115. Gupta S, Verfaillie C, Chmielewski D, Kim Y, Rosenberg ME (2002) A role for extrarenal cells in the regeneration following acute renal failure. Kidney Int 62(4):1285–1290

    Article  PubMed  Google Scholar 

  116. Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R (2005) Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16(6):1723–1732

    Article  CAS  PubMed  Google Scholar 

  117. Sugimoto H, Mundel TM, Sund M, Xie L, Cosgrove D, Kalluri R (2006) Bone-marrow-derived stem cells repair basement membrane collagen defects and reverse genetic kidney disease. Proc Natl Acad Sci USA 103(19):7321–7326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li L, Truong P, Igarashi P, Lin F (2007) Injury-induced cell fusion between bone marrow-derived cells and renal cells in post-ischemic mouse kidneys. J Am Soc Nephrol (in press)

  119. Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15(10):1562–1574

    Article  CAS  PubMed  Google Scholar 

  120. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416(6880):542–545

    Article  CAS  PubMed  Google Scholar 

  121. Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Olson S, Grompe M (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422(6934):897–901

    Article  CAS  PubMed  Google Scholar 

  122. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422(6934):901–904

    Article  CAS  PubMed  Google Scholar 

  123. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973

    Article  CAS  PubMed  Google Scholar 

  124. Rizvi AZ, Swain JR, Davies PS, Bailey AS, Decker AD, Willenbring H, Grompe M, Fleming WH, Wong MH (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103(16):6321–6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 100(21):12313–12318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Weimann JM, Johansson CB, Trejo A, Blau HM (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5(11):959–966

    Article  CAS  PubMed  Google Scholar 

  127. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11(3):261–262

    Article  CAS  PubMed  Google Scholar 

  128. Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14(6):1035–1041

    PubMed  Google Scholar 

  129. Lange C, Togel F, Ittrich H, Clayton F, Nolte-Ernsting C, Zander AR, Westenfelder C (2005) Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int 68(4):1613–1617

    Article  PubMed  Google Scholar 

  130. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292(5):F1626–1635

    Article  CAS  PubMed  Google Scholar 

  131. Herrera MB, Bussolati B, Bruno S, Morando L, Mauriello-Romanazzi G, Sanavio F, Stamenkovic I, Biancone L, Camussi G (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72(4):430–441

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) grants K08 DK062839 and R01 DK66535, and American Society of Nephrology Gottschalk Award. FL is the first recipient of the Norman Siegel Pediatric Research Grant Award. I thank Drs. Peter Igarashi and Michel Baum for helpful discussion and Laurel Johnson for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangming Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, F. Renal repair: role of bone marrow stem cells. Pediatr Nephrol 23, 851–861 (2008). https://doi.org/10.1007/s00467-007-0634-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0634-8

Keywords

Navigation