Skip to main content

Renal Injury Repair: How About the Role of Stem Cells

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Renal failure is one of the most important causes of mortality and morbidity all over the world. Acute kidney injury (AKI) is a major clinical problem that affects up to 5% of all hospitalized patients. Although the kidney has a remarkable capacity for regeneration after acute injury, the mortality among patients with severe AKI remains dismally high, and in clinical practice, most patients cannot be cured completely and suffer from chronic kidney disease (CKD). Recently, the incidence and prevalence of CKD have increased, largely as a result of the enhanced prevalence of diabetes and obesity. The progressive nature of CKD and the ensuing end-stage renal disease (ESRD) place a substantial burden on global healthcare resources. Currently, dialysis and transplantation remain the only treatment options. Finding new therapeutic methods to fight AKI and CKD remains an ongoing quest. Although the human renal histological structure is complex, stem cell therapies have been applied to repair injured kidneys. The curative effects of mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs), induced pluripotent stem cells (iPSCs), and nephron progenitor cells (NPCs) on renal repair have also been reported by researchers. This review focuses on stem cell therapy and mechanisms for renal injury repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araoka T, Mae S, Kurose Y, Uesugi M, Ohta A, Yamanaka S et al (2014) Efficient and rapid induction of human iPSCs/ESCs into nephrogenic intermediate mesoderm using small molecule-based differentiation methods. PLoS ONE 9:e84881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asanuma H, Meldrum DR, Meldrum KK (2010) Therapeutic applications of mesenchymal stem cells to repair kidney injury. J Urol 184:26–33

    Article  PubMed  Google Scholar 

  • Bongso A, Fong CY, Ng SC, Ratnam S (1994) Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 9:2110–2117

    Article  CAS  PubMed  Google Scholar 

  • Bruno S, Chiabotto G, Camussi G (2014) Concise review: different mesenchymal stromal/stem cell populations reside in the adult kidney. Stem Cells Transl Med 3:1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, Biancone L et al (2012) Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE 7:e33115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bussolati B, Bruno S, Grange C, Buttiglieri S, Deregibus MC, Cantino D et al (2005) Isolation of renal progenitor cells from adult human kidney. Am J Pathol 166:545–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21:1045–1056

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Patel B, Bonala S, Manne S, Zhou Y, Vadrevu SK et al (2017) Notch transactivates Rheb to maintain the multipotency of TSC-null cells. Nat Commun 8:1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L et al (2010) Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS ONE 5:e11803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz NM, Song X, Czerniecki SM, Gulieva RE, Churchill AJ, Kim YK et al (2017) Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater 16:1112–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Tan Y, Cai S, Xiong X, Wang L, Ye Q et al (2011) The role of CXCR11 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J Cell Mol Med 15:1299–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darisipudi MN, Kulkarni OP, Sayyed SG, Ryu M, Migliorini A, Sagrinati C et al (2011) Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am J Pathol 179:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dekel B, Shezen E, Even-Tov-Friedman S, Katchman H, Margalit R, Nagler A et al (2006) Transplantation of human hematopoietic stem cells into ischemic and growing kidneys suggests a role in vasculogenesis but not tubulogenesis. Stem Cells 24:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Duffield JS, Park KM, Hsiao LL, Kelley VR, Scadden DT, Ichimura T et al (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Invest 115:1743–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang TC, Alison MR, Cook HT, Jeffery R, Wright NA, Poulsom R (2005) Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury. J Am Soc Nephrol 16:1723–1732

    Article  CAS  PubMed  Google Scholar 

  • Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V et al (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715

    Article  CAS  PubMed  Google Scholar 

  • Freedman BS, Lam AQ, Sundsbak JL, Iatrino R, Su X, Koon SJ et al (2013) Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations. J Am Soc Nephrol 24:1571–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatti S, Bruno S, Deregibus MC, Sordi A, Cantaluppi V, Tetta C et al (2011) Microvesicles derived from human adult mesenchymal stem cells protect against ischaemia-reperfusion-induced acute and chronic kidney injury. Nephrol Dial Transplant 26:1474–1483

    Article  CAS  PubMed  Google Scholar 

  • Goncalves AF, Adlesic M, Brandt S, Hejhal T, Harlander S, Sommer L et al (2017) Evidence of renal angiomyolipoma neoplastic stem cells arising from renal epithelial cells. Nat Commun 8:1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grange C, Moggio A, Tapparo M, Porta S, Camussi G, Bussolati B (2014) Protective effect and localization by optical imaging of human renal CD133 + progenitor cells in an acute kidney injury model. Physiol Rep 2:e12009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He J, Wang Y, Sun S, Yu M, Wang C, Pei X et al (2012) Bone marrow stem cells-derived microvesicles protect against renal injury in the mouse remnant kidney model. Nephrology (Carlton) 17:493–500

    Article  Google Scholar 

  • Held PK, Al-Dhalimy M, Willenbring H, Akkari Y, Jiang S, Torimaru Y et al (2006) In vivo genetic selection of renal proximal tubules. Mol Ther 13:49–58

    Article  CAS  PubMed  Google Scholar 

  • Hickson LJ, Eirin A, Lerman LO (2016) Challenges and opportunities for stem cell therapy in patients with chronic kidney disease. Kidney Int 89:767–778

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys BD, Bonventre JV (2008) Mesenchymal stem cells in acute kidney injury. Annu Rev Med 59:311–325

    Article  CAS  PubMed  Google Scholar 

  • Humphreys BD, Valerius MT, Kobayashi A, Mugford JW, Soeung S, Duffield JS et al (2008) Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2:284–291

    Article  CAS  PubMed  Google Scholar 

  • Imasawa T, Utsunomiya Y, Kawamura T, Zhong Y, Nagasawa R, Okabe M et al (2001) The potential of bone marrow-derived cells to differentiate to glomerular mesangial cells. J Am Soc Nephrol 12:1401–1409

    CAS  PubMed  Google Scholar 

  • Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12:2625–2635

    CAS  PubMed  Google Scholar 

  • Iwasaki M, Adachi Y, Minamino K, Suzuki Y, Zhang Y, Okigaki M et al (2005) Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSF. J Am Soc Nephrol 16:658–666

    Article  CAS  PubMed  Google Scholar 

  • Jang HR, Park JH, Kwon GY, Lee JE, Huh W, Jin HJ et al (2014) Effect of preemptive treatment with human umbilical cord blood-derived mesenchymal stem cells on the development of renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 307:F1149–F1161

    Article  CAS  PubMed  Google Scholar 

  • Jia X, Xie X, Feng G, Lu H, Zhao Q, Che Y et al (2012) Bone marrow-derived cells can acquire renal stem cells properties and ameliorate ischemia-reperfusion induced acute renal injury. BMC Nephrol 13:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushal GP, Shah SV (2014) Challenges and advances in the treatment of AKI. J Am Soc Nephrol 25:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramann R, Humphreys BD (2014) Kidney pericytes: roles in regeneration and fibrosis. Semin Nephrol 34:374–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam AQ, Freedman BS, Morizane R, Lerou PH, Valerius MT, Bonventre JV (2014) Rapid and efficient differentiation of human pluripotent stem cells into intermediate mesoderm that forms tubules expressing kidney proximal tubular markers. J Am Soc Nephrol 25:1211–1225

    Article  CAS  PubMed  Google Scholar 

  • Lazzeri E, Ronconi E, Angelotti ML, Peired A, Mazzinghi B, Becherucci F et al (2015) Human urine-derived renal progenitors for personalized modeling of genetic kidney disorders. J Am Soc Nephrol 26:1961–1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee PY, Chien Y, Chiou GY, Lin CH, Chiou CH, Tarng DC (2012) Induced pluripotent stem cells without c-Myc attenuate acute kidney injury via downregulating the signaling of oxidative stress and inflammation in ischemia-reperfusion rats. Cell Transplant 21:2569–2585

    Article  PubMed  Google Scholar 

  • Lin F, Moran A, Igarashi P (2005) Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemic kidney. J Clin Invest 115:1756–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Liu S, Li Y, Wang X, Xue W, Ge G et al (2012) The role of SDF-1-CXCR38/CXCR38 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS ONE 7:e34608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Han G, Cheng J, Huang J, Tian J (2013a) Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Exp Biol Med (Maywood) 238:678–686

    Article  CAS  Google Scholar 

  • Liu N, Patzak A, Zhang J (2013b) CXCR40-overexpressing bone marrow-derived mesenchymal stem cells improve repair of acute kidney injury. Am J Physiol Renal Physiol 305:F1064–F1073

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Feng Y, Dong C, Liu D, Wu X, Wu H et al (2013c) Study on therapeutic action of bone marrow derived mesenchymal stem cell combined with vitamin E against acute kidney injury in rats. Life Sci 92:829–837

    Article  CAS  PubMed  Google Scholar 

  • Mae SI, Shono A, Shiota F, Yasuno T, Kajiwara M, Gotoda-Nishimura N et al (2013) Monitoring and robust induction of nephrogenic intermediate mesoderm from human pluripotent stem cells. Nat Commun 4:1367

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Curtis LA, Janowska-Wieczorek A (2013) Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR43 axis. Biomed Res Int 2013:561098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mazzinghi B, Ronconi E, Lazzeri E, Sagrinati C, Ballerini L, Angelotti ML et al (2008) Essential but differential role for CXCR44 and CXCR44 in the therapeutic homing of human renal progenitor cells. J Exp Med 205:479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Migliorini A, Angelotti ML, Mulay SR, Kulkarni OO, Demleitner J, Dietrich A et al (2013) The antiviral cytokines IFN-alpha and IFN-beta modulate parietal epithelial cells and promote podocyte loss: implications for IFN toxicity, viral glomerulonephritis, and glomerular regeneration. Am J Pathol 183:431–440

    Article  CAS  PubMed  Google Scholar 

  • Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M et al (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804

    Article  PubMed  Google Scholar 

  • Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV (2015) Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morizane R, Monkawa T, Itoh H (2009) Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro. Biochem Biophys Res Commun 390:1334–1339

    Article  CAS  PubMed  Google Scholar 

  • Peired A, Angelotti ML, Ronconi E, la Marca G, Mazzinghi B, Sisti A et al (2013) Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J Am Soc Nephrol 24:1756–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639

    PubMed  PubMed Central  Google Scholar 

  • Pichaiwong W, Hudkins KL, Wietecha T, Nguyen TQ, Tachaudomdach C, Li W et al (2013) Reversibility of structural and functional damage in a model of advanced diabetic nephropathy. J Am Soc Nephrol 24:1088–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponte AL, Marais E, Gallay N, Langonne A, Delorme B, Herault O et al (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745

    Article  CAS  PubMed  Google Scholar 

  • Qi S, Wu D (2013) Bone marrow-derived mesenchymal stem cells protect against cisplatin-induced acute kidney injury in rats by inhibiting cell apoptosis. Int J Mol Med 32:1262–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909

    Article  CAS  PubMed  Google Scholar 

  • Reinders ME, de Fijter JW, Rabelink TJ (2014) Mesenchymal stromal cells to prevent fibrosis in kidney transplantation. Curr Opin Organ Transplant 19:54–59

    Article  CAS  PubMed  Google Scholar 

  • Rizzo P, Perico N, Gagliardini E, Novelli R, Alison MR, Remuzzi G et al (2013) Nature and mediators of parietal epithelial cell activation in glomerulonephritides of human and rat. Am J Pathol 183:1769–1778

    Article  CAS  PubMed  Google Scholar 

  • Romagnani P, Lasagni L, Remuzzi G (2013) Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat Rev Nephrol 9:137–146

    Article  CAS  PubMed  Google Scholar 

  • Ronconi E, Sagrinati C, Angelotti ML, Lazzeri E, Mazzinghi B, Ballerini L et al (2009) Regeneration of glomerular podocytes by human renal progenitors. J Am Soc Nephrol 20:322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F et al (2006) Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J Am Soc Nephrol 17:2443–2456

    Article  CAS  PubMed  Google Scholar 

  • Semedo P, Wang PM, Andreucci TH, Cenedeze MA, Teixeira VP, Reis MA et al (2007) Mesenchymal stem cells ameliorate tissue damages triggered by renal ischemia and reperfusion injury. Transplant Proc 39:421–423

    Article  CAS  PubMed  Google Scholar 

  • Shih YC, Lee PY, Cheng H, Tsai CH, Ma H, Tarng DC (2013) Adipose-derived stem cells exhibit antioxidative and antiapoptotic properties to rescue ischemic acute kidney injury in rats. Plast Reconstr Surg 132:940e–951e

    Article  CAS  PubMed  Google Scholar 

  • Si XY, Li JJ, Yao T, Wu XY (2014) Transforming growth factor-beta1 in the microenvironment of ischemia reperfusion-injured kidney enhances the chemotaxis of mesenchymal stem cells to stromal cell-derived factor-1 through upregulation of surface chemokine (C-X-C motif) receptor 4. Mol Med Rep 9:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Solanas G, Benitah SA (2013) Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nat Rev Mol Cell Biol 14:737–748

    Article  CAS  PubMed  Google Scholar 

  • Song B, Niclis JC, Alikhan MA, Sakkal S, Sylvain A, Kerr PG et al (2011) Generation of induced pluripotent stem cells from human kidney mesangial cells. J Am Soc Nephrol 22:1213–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stokman G, Leemans JC, Claessen N, Weening JJ, Florquin S (2005) Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol 16:1684–1692

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H et al (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG et al (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol 16:118–126

    Article  CAS  PubMed  Google Scholar 

  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C et al (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526:564–568

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Togel F, Isaac J, Westenfelder C (2004) Hematopoietic stem cell mobilization-associated granulocytosis severely worsens acute renal failure. J Am Soc Nephrol 15:1261–1267

    Article  PubMed  Google Scholar 

  • Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    Article  CAS  PubMed  Google Scholar 

  • Togel FE, Westenfelder C (2011) Role of SDF-1 as a regulatory chemokine in renal regeneration after acute kidney injury. Kidney Int 1(Suppl):87–89

    Article  CAS  Google Scholar 

  • Togel FE, Westenfelder C (2012) Kidney protection and regeneration following acute injury: progress through stem cell therapy. Am J Kidney Dis 60:1012–1022

    Article  PubMed  Google Scholar 

  • Uccelli A, Moretta L, Pistoia V (2008) Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736

    Article  CAS  PubMed  Google Scholar 

  • Westenfelder C, Togel FE (2011) Protective actions of administered mesenchymal stem cells in acute kidney injury: relevance to clinical trials. Kidney Int 1(Suppl):103–106

    Article  Google Scholar 

  • Wise AF, Williams TM, Kiewiet MB, Payne NL, Siatskas C, Samuel CS et al (2014) Human mesenchymal stem cells alter macrophage phenotype and promote regeneration via homing to the kidney following ischemia-reperfusion injury. Am J Physiol Renal Physiol 306:F1222–F1235

    Article  CAS  PubMed  Google Scholar 

  • Wong CY, Tan EL, Cheong SK (2014) In vitro differentiation of mesenchymal stem cells into mesangial cells when co-cultured with injured mesangial cells. Cell Biol Int 38:497–501

    Article  CAS  PubMed  Google Scholar 

  • Yuen DA, Connelly KA, Zhang Y, Advani SL, Thai K, Kabir G et al (2013) Early outgrowth cells release soluble endocrine antifibrotic factors that reduce progressive organ fibrosis. Stem Cells 31:2408–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Pippin JW, Krofft RD, Naito S, Liu ZH, Shankland SJ (2013) Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol 304:F1375–F1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao JJ, Liu JL, Liu L, Jia HY (2014) Protection of mesenchymal stem cells on acute kidney injury. Mol Med Rep 9:91–96

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J et al (2012) Generation of human induced pluripotent stem cells from urine samples. Nat Protoc 7:2080–2089

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Benda C, Duzinger S, Huang Y, Li X, Li Y et al (2011) Generation of induced pluripotent stem cells from urine. J Am Soc Nephrol 22:1221–1228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81670616 and No. 81873598), the innovation fund for the clinical research of the Harbin Medical University (2017LCZX44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, JS., Li, B. (2019). Renal Injury Repair: How About the Role of Stem Cells. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_32

Download citation

Publish with us

Policies and ethics