Skip to main content

Advertisement

Log in

Reduced seed predation after invasion supports enemy release in a broad biogeographical survey

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

The Enemy Release (ER) hypothesis predicts an increase in the plant invasive capacity after being released from their associated herbivores or pathogens in their area of origin. Despite the large number of studies on biological invasions addressing this hypothesis, tests evaluating changes in herbivory on native and introduced populations and their effects on plant reproductive potential at a biogeographical level are relatively rare. Here, we tested the ER hypothesis on the South African species Senecio pterophorus (Asteraceae), which is native to the Eastern Cape, has expanded into the Western Cape, and was introduced into Australia (>70–100 years ago) and Europe (>30 years ago). Insect seed predation was evaluated to determine whether plants in the introduced areas were released from herbivores compared to plants from the native range. In South Africa, 25 % of the seedheads of sampled plants were damaged. Plants from the introduced populations suffered lower seed predation compared to those from the native populations, as expected under the ER hypothesis, and this release was more pronounced in the region with the most recent introduction (Europe 0.2 % vs. Australia 15 %). The insect communities feeding on S. pterophorus in Australia and Europe differed from those found in South Africa, suggesting that the plants were released from their associated fauna after invasion and later established new associations with local herbivore communities in the novel habitats. Our study is the first to provide strong evidence of enemy release in a biogeographical survey across the entire known distribution of a species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JM, Fang W, Callaway RM, Cipollini D, Newell E (2009) A cross-continental test of the Enemy Release Hypothesis: leaf herbivory on Acer platanoides (L.) is three times lower in North America than in its native Europe. Biol Invasions 11:1005–1016. doi:10.1007/s10530-008-9312-4

    Article  Google Scholar 

  • Agosta SJ (2006) On ecological fitting, plant-insect associations, herbivore host shifts, and host plant selection. Oikos 114:556–565. doi:10.1111j.2006.0030-1299.15025.x

    Article  Google Scholar 

  • Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecol Lett 6:712–715. doi:10.1046/j.1461-0248.2003.00498.x

    Article  Google Scholar 

  • Barberis G, Minuto L, Peccenini S (1998) Senecio grisebachii Baker (Compositae), new to the Italian flora. Webbia 52:201–206

    Article  Google Scholar 

  • Brändle M, Kuhn I, Klotz S, Belle C, Brandl R (2008) Species richness of herbivores on exotic host plants increases with time since introduction of the host. Divers Distrib 14:905–912. doi:10.1111/j.1472-4642.2008.00511.x

    Article  Google Scholar 

  • Caño L, Escarré J, Fleck I, Blanco-Moreno JM, Sans FX (2008) Increased fitness and plasticity of an invasive species in its introduced range: a study using Senecio pterophorus. J Ecol 96:468–476. doi:10.1007s00442-008-1182-z

    Article  Google Scholar 

  • Casasayas T (1989) La flora al lòctona de Catalunya. Catàleg raonat de les plantes vasculars exòtiques que creixen sense cultiu al NE de la Península Ibèrica. Dissertation, Universitat de Barcelona, Barcelona

  • Castells E, Berhow MA, Vaughn SF, Berenbaum MR (2005) Geographic variation in alkaloid production in Conium maculatum populations experiencing differential herbivory by Agonopterix alstroemeriana. J Chem Ecol 31:1693–1709. doi:10.1007/s10886-005-5921-x

    Article  PubMed  CAS  Google Scholar 

  • Chamorro L, Caballero B, Blanco-Moreno JM, Caño L, Garcia-Serrano H, Masalles RM, Sans FX (2006) Ecología y distribución de Senecio pterophorus (Compositae) en la Península Ibérica. An Jard Bot Madr 53:55–62. doi:10.3989/ajbm.2006.v63.i1.31

    Google Scholar 

  • Colautti RI, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733. doi:10.1111/j.1461-0248.2004.00616.x

    Article  Google Scholar 

  • Cripps MG, Schwarzlander M, McKenney JL, Hinz HL, Price WJ (2006) Biogeographical comparison of the arthropod herbivore communities associated with Lepidium draba in its native, expanded and introduced ranges. J Biogeogr 33:2107–2119. doi:10.1111/j.1365-2699.2006.01560.x

    Article  Google Scholar 

  • Cripps MG, Edwards GR, Bourdôt GW, Saville DJ, Hinz HL, Fowler SV (2010) Enemy release does not increase performance of Cirsium arvense in New Zealand. Plant Ecol 209:123–134

    Article  Google Scholar 

  • DeWalt SJ, Denslow JS, Ickes K (2004) Natural-enemy releases facilitates habitat expansion of the invasive thropical shrub Clidemia hirta. Ecology 85:471–483

    Article  Google Scholar 

  • Dirección General de Aduanas de España (1951–1986) Estadística del comercio exterior de España. Ministerio de Hacienda, Madrid

    Google Scholar 

  • Ebeling SK, Hensen I, Auge H (2008) The invasive shrub Buddleja davidii performs better in its introduced range. Divers Distrib 14:225–233. doi:10.1111/j.1472-4642.2007.00422.x

    Article  Google Scholar 

  • Elton CS (1958) The Ecology of Invasions by animals and plants. Methuen, London

    Book  Google Scholar 

  • Engelkes T, Morrien E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946–948. doi:10.1038/nature07474

    Article  PubMed  CAS  Google Scholar 

  • Fenner M, Lee WG (2001) Lack of pre-dispersal seed predators in introduced Asteraceae in New Zealand. NZ J Ecol 25:95–99

    Google Scholar 

  • Font X (2012) Vegetation and flora module. Biodiversity database of Catalonia. <http://biodiver.bio.ub.es/biocat/homepage.html>. Accessed 28 November 2012

  • Graves SD, Shapiro AM (2003) Exotics as host plants of the California butterfly fauna. Biol Conserv 110:413–433 pii: S0006-3207(02)00233-1

    Article  Google Scholar 

  • Gurevitch J, Fox GA, Wardle GM, Inderjit, Taub D (2011) Emergent insights from the synthesis of conceptual frameworks for biological invasions. Ecol Lett 14:407–418. doi:10.1111/j.1461-0248.2011.01594.x

    Article  PubMed  CAS  Google Scholar 

  • Hall DB (2000) Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56:1030–1039. doi:10.1111j.0006-341X.2000.01030.x

    Article  PubMed  CAS  Google Scholar 

  • Hardy DE, Drew RAI (1996) Revision of the Australian Tephritini (Diptera: Tephritidae). Invertebr Taxon 10:213–405. doi:10.1071/IT9960213

    Article  Google Scholar 

  • Hawkes CV (2007) Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. Am Nat 170:832–843. doi:10.1086/522842

    Article  PubMed  Google Scholar 

  • Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J Ecol 93:5–15. doi:10.1111/j.1365-2745.2004.00953.x

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • Hilliard OM (1977) Compositae in natal. University of Natal Press, Pietermaritzburg

    Google Scholar 

  • Hinz HL, Schwarzlander M, McKenney JL, Cripps MG, Harmon B, Price WJ (2012) Biogeographical comparison of the invasive Lepidium draba in its native, expanded and introduced ranges. Biol Invasions 14:1999–2016

    Article  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170 pii: S0169-5347(01)02430-2

    Article  Google Scholar 

  • Kolb A, Ehrlén J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol 9:79–100. doi:10.1016/j.ppees.2007.09.001

    Article  Google Scholar 

  • Levyns MR (1950) Compositae. In: Adamson RS, Salter TM (eds) Flora of the cape peninsula. Juta, Cape Town

    Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373. doi:10.1034/j.1600-0706.2001.950301.x

    Article  Google Scholar 

  • Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    Google Scholar 

  • Memmott J, Fowler SV, Paynter Q, Sheppard AW, Syrett P (2000) The invertebrate fauna on broom, Cytisus scoparius, in two native and two exotic habitats. Acta Oecol 21:213–222

    Article  Google Scholar 

  • Mitchell CE, Blumenthal D, Jarosik V, Puckett EE, Pysek P (2010) Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecol Lett 13:1525–1535. doi:10.1111/j.1461-0248.2010.01543.x

    Article  PubMed  Google Scholar 

  • Parker JD, Hay ME (2005) Biotic resistance to plant invasions? Native herbivores prefer non-native plants. Ecol Lett 8:959–967. doi:10.1111j.1461-0248.2005.00799.x

    Article  Google Scholar 

  • Parsons WT, Cuthbertson EG (1992) Noxious weeds of Australia. Inkata, Melbourne

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of nonindigenous species in United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Prati D, Bossdorf O (2004) A comparison of native and introduced populations of the South African Ragwort Senecio inaequidens DC. in the field. In: Breckle SW, Schweizer B, Fandmeier A (eds) Results of the worldwide ecological studies. Heimbach, Stuttgart, pp 353–359

    Google Scholar 

  • Preston CA, Pearman DA, Dines TD (2002) New altlas of the British and Irish flora: an atlas of the vacular plants of Britain, Ireland, the Isle of Man and the Channel Islands. Oxford University Press, Oxford

    Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi:10.1111/j.1461-0248.2006.00950.x

    Article  PubMed  Google Scholar 

  • Roesler U (1973) Phycitinae. 1. Teilband: Trifine Acrobasina. In: Amsel HG, Gregor F, Reisser H (eds) Microlepidoptera Palaearctica. Fromme, Wien

    Google Scholar 

  • Sans FX, Garcia-Serrano H, Afán I (2004) Life-history traits of alien and native Senecio species in the Mediterranean region. Acta Oecol 26:167–178. doi:10.1016/j.actao.2004.04.001

    Article  Google Scholar 

  • Schaffner U, Ridenour WM, Wolf VC, Basset T, Müller C, Müller-Scharer H, Sutherland S, Lortie JL, Callaway RM (2011) Plant invasions, generalist herbivores, and novel defense weapons. Ecology 92:829–835

    Article  PubMed  Google Scholar 

  • Sheppard AW, Brun LA, Lewis RC (1996) A demographic comparison of common heliotrope. Heliotropium europaeum L.: Southern Australia and Southern France. In: Shepherd RCH (ed) Eleventh Australian Weeds Conference Proceedings. Weed Science Society of Victoria, Victoria, pp 286–290

  • Siemann E, Rogers WE, DeWalt SJ (2006) Rapid adaptation of insect herbivores to an invasive plant. Proc R Soc Lond B 273:2763–2769. doi:10.1098/rspb.2006.3644

    Article  Google Scholar 

  • Tallamy DW, Ballard M, D’Amico V (2010) Can alien plants support generalist insect herbivores? Biol Invasions 12:2285–2292. doi:10.1007s10530-009-9639-5

    Article  Google Scholar 

  • The Council of Heads of Australasian Herbaria (1999–2012). Australia’s virtual herbarium. <www.chah.gov.au/avh> Accessed 28 November 2012

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Verhoeven KJF, Biere A, Harvey JA, van der Putten WH (2009) Plant invaders and their novel natural enemies: who is naive? Ecol Lett 12:107–117. doi:10.1111/j.1461-0248.2008.01248.x

    Article  PubMed  Google Scholar 

  • Vilà M, Maron JL, Marco L (2005) Evidence for the enemy release hypothesis in Hypericum perforatum. Oecologia 142:474–479. doi:10.1007s00442-004-1731-z

    Article  PubMed  Google Scholar 

  • Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R (1996) Biological invasions as global environmental change. Am Sci 84:468–478

    Google Scholar 

  • Williams JL, Auge H, Maron JL (2010) Testing hypotheses for exotic plant success: parallel experiments in the native and introduced ranges. Ecology 91:1355–1366

    Article  PubMed  Google Scholar 

  • Wolfe LM (2002) Why alien invaders succeed: support for the escape-from-enemy hypothesis. Am Nat 160:705–711. doi:10.1086/343872

    Article  PubMed  Google Scholar 

  • Zangerl AR, Stanley MC, Berenbaum MR (2008) Selection for chemical trait remixing in an invasive weed after reassociation with a coevolved specialist. Proc Natl Acad Sci USA 105:4547–4552. doi:10.1073/pnas.0710280105

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the collaborators for providing data and helping during the collecting trips: Dr Jaco Le Roux (Stellenbosch University, South Africa), Christina Potgieter (University of KwaZulu-Natal, South Africa), Dr. Ian Thompson (Royal Botanic Gardens, Melbourne, Australia), Tony Dold (Rhodes University, South Africa), and David Wopula (South Africa). We thank Anna Escolà and Pere Losada for outstanding field and laboratory assistance, Estíbaliz Palma for seed analyses, and Bernhard Merz (Muséum d’Histoire Naturelle, Switzerland) and Jordi Dantart (Catalonia) for identification of insect specimens. M.M. has a FPI predoctoral fellowship from Ministerio de Ciencia e Innovación (Spain). This research was conducted thanks to the financial support provided to E.C. by Ministerio de Ciencia e Innovación (Spain) (GCL2008-02421/BOS) and Ministerio de Economía y Competitividad (Spain) (GCL2011-29205). X.S., E.C., J.M.B.M. and M.M. belong to the Agroecosystems Research group funded by Generalitat de Catalunya (Catalonia) (2009 SGR1058). The experiments comply with the current laws of the countries (Spain, Italy, Australia, and South Africa) in which the experiments were performed. The permits required for sampling were obtained from the corresponding authorities when necessary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Castells.

Additional information

Communicated by John Lill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castells, E., Morante, M., Blanco-Moreno, J.M. et al. Reduced seed predation after invasion supports enemy release in a broad biogeographical survey. Oecologia 173, 1397–1409 (2013). https://doi.org/10.1007/s00442-013-2718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2718-4

Keywords

Navigation