Skip to main content

Advertisement

Log in

Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Direct calorimetry is the gold standard means of measuring human metabolic rate and its use has been fundamental for understanding metabolism in health and disease. While metabolic rate is now more commonly estimated indirectly from measures of the oxygen consumed during respiration, direct calorimetry provides the user with the unique capacity to quantify the heat produced from aerobic and anaerobic metabolism by measuring heat exchange between the body and the environment. This review provides a brief historical overview of the fundamental concepts which underlie direct calorimetry, of pioneer scientists which developed these concepts into functional pieces of equipment and the subsequent use of direct calorimetry to advance our understanding of energy balance, nutrition, and the pathogenesis of metabolic diseases. Attention is directed to seminal studies that successfully employed direct calorimetry to verify that the law of energy conservation also applies to human beings and to establish the validity of indirect calorimetry. Finally, we discuss the more recent use of direct calorimetry for the measurement of whole-body heat exchange and body heat storage in the study of human thermoregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aikas E, Karvonen MJ, Piironen P, Ruosteenoja R (1962) Intramuscular, rectal and oesophageal temperature during exercise. Acta Physiol Scand 54:366–370

    Article  Google Scholar 

  • Armsby HP (1913) A comparison of the observed and computed heat production of cattle. J Am Chem Soc 35(11):1794–1800

    Article  CAS  Google Scholar 

  • Armsby HP, Fries JA (1913) The influence of standing or lying upon the metabolism of cattle. Am J Physiol 31(4):245–253

    Article  CAS  Google Scholar 

  • Armsby HP, Fries JA (1919) Net energy values and starch values. J Agric Sci 9(2):182–187

    Article  Google Scholar 

  • Atwater WO (1905) A respiration calorimeter with appliances for the direct determination of oxygen, vol 42. Carnegie Institute of Washington, Washington, DC

    Book  Google Scholar 

  • Atwater WO, Rosa EB (1899a) Description of a new respiration calorimeter and experiments on the conservation of energy in the human body. Government Printing Office, Washington

    Google Scholar 

  • Atwater WO, Rosa EB (1899b) A new respiration calorimeter and experiments on the conservation of energy in the human body, II. Phys Rev (Series 1) 9:214–251

    Article  Google Scholar 

  • Atwater WO, Rosa EB (1899c) A new respiration calorimeter and experiments on the conservation of energy in the human body. I. Phys Rev (Series I) 9:129–163

    Article  Google Scholar 

  • Aub JC (1962) Biographical memoir: Eugene Floyd DuBois. In: National academy of sciences, vol 36, pp 125–145

  • Auguet A, Lefèvre J (1929) Nouvelle chamber calorimetrique du laboratoire de bioenergetique. Comptes Renders des Seances de la Societe de Biologie et de ses Filiales 100:251–253

    Google Scholar 

  • Aulick LH, Robinson S, Tzankoff SP (1981) Arm and leg intravascular temperatures of men during submaximal exercise. J Appl Physiol 51(5):1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Benedict FG (1919) Energy requirements of children from birth to puberty. Boston Med Surg J 181(5):107–139

    Article  CAS  Google Scholar 

  • Benedict FG, Lee RC (1937) Lipogenesis in the animal body, with special reference to the physiology of the goose. Carnegie Institute of Washington, pp 232

  • Benedict FG, Roth P (1915) The metabolism of vegetarians as compared with the metabolism of non-vegetarians of like weight and height. J Biol Chem 20(3):231–241

    Article  CAS  Google Scholar 

  • Benedict FG, Roth P (1918) Effects of a prolonged reduction in diet on 25 men I. Influence on basal metabolism and nitrogen excretion. Proc Natl Acad Sci USA 4(6):149–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict FG, Smith HM (1915) The metabolism of athletes as compared with normal individuals of similar height and weight. J Biol Chem 20(3):243–252

    Article  CAS  Google Scholar 

  • Benedict FG, Talbot FB (1915) The physiology of the new-born infant. Proc Natl Acad Sci USA 1(12):600–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benedict FG, Emmes LE, Roth P, Smith HM (1914) The basal, gaseous metabolism of normal men and women. J Biol Chem 18(2):139–155

    Article  CAS  Google Scholar 

  • Benzinger TH (1959) On physical heat regulation and the sense of temperature in man. Proc Natl Acad Sci USA 45:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzinger TH (1961) The diminution of thermoregulatory sweating during cold-reception at the skin. Proc Natl Acad Sci USA 47:1683–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzinger TH (1963a) Gradient layer calorimetry and human calorimetry. In: Dahl AI, Herzfeld CM (eds) Temperature—its measurement and control in science and industry, vol 3. Reinhold, New York

  • Benzinger TH (1963b) Peripheral cold- and central warm-reception, main origins of human thermal discomfort. Proc Natl Acad Sci USA 49:832–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benzinger TH, Kitzinger C (1949a) Direct calorimetry by means of the gradient principle. Rev Sci Instr 20:849

    Article  CAS  Google Scholar 

  • Benzinger TH, Kitzinger C (1949b) Gradient layer calorimetry and human calorimetry. In: Hardy JD (ed) Temperature—its measurement and control in science and industry, vol 3. Reinhold, New York, pp 158–165

    Google Scholar 

  • Benzinger TH, Huebscher RG, Minard D, Kitzinger C (1958) Human calorimetry by means of the gradient principle. J Appl Physiol (1985) 12(2):S1–S24

    Article  CAS  Google Scholar 

  • Benzinger TH, Pratt AW, Kitzinger C (1961) The thermostatic control of human metabolic heat production. Proc Natl Acad Sci USA 47(5):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brun T, Webb P, de Benoist B, Blackwell F (1985) Calorimetric evaluation of the diary-respirometer technique for the field measurement of the 24-hour energy expenditure. Hum Nutr Clin Nutr 39(5):321–334

    CAS  PubMed  Google Scholar 

  • Burton AC (1935) Human calorimetry: the average temperature of the tissues of the body. J Nutr 9:261–280

    Article  CAS  Google Scholar 

  • Burton AC, Bazett HC (1936) A study of the average temperature of the tissues, of the exchanges of heat and vasomotor responses in man by means of a bath calorimeter. Am J Physiol 117:36–54

    Article  Google Scholar 

  • Capstick G (1921) A calorimeter for use with large animals. J Agric Science (Cambridge) 11:408–431

    Article  Google Scholar 

  • Carlson LD, Honda N, Sasaki T, Judy WV (1964) A human calorimeter. Proc Soc Exp Biol Med 117:327–331

    Article  CAS  PubMed  Google Scholar 

  • Cathcart EP (ed) (1921) The physiology of protein metabolism. Longmans, Green, London

    Google Scholar 

  • Chang KS, Farrell RT, Snellen JW, King FG (1984) Calorimetrical comparison of insulative properties of metalized plastic, clear polyethylene, and polyester blanket. Can Anaesth Soc J 31(6):690–694

    Article  CAS  PubMed  Google Scholar 

  • Chappuis P, Pittet P, Jequier E (1976) Heat storage regulation in exercise during thermal transients. J Appl Physiol (1985) 40(3):384–392

    Article  CAS  Google Scholar 

  • Close WH, Dauncey MJ, Ingram DL (1980) Heat loss from humans measured with a direct calorimeter and heat-flow meters. Br J Nutr 43(1):87–93

    Article  CAS  PubMed  Google Scholar 

  • Coleman W, Gephart AB (1915) Sixth paper notes on the absorption of fat and protein in typhoid fever. Arch Intern Med XV:882–886

    Article  Google Scholar 

  • Colin J, Timbal J, Boutelier C (1971a) Experimental determination of the equation permitting the calculation of the mean body temperature in neutral and hot environment. J Physiol (Paris) 63(3):229–231

    CAS  Google Scholar 

  • Colin J, Timbal J, Houdas Y, Boutelier C, Guieu JD (1971b) Computation of mean body temperature from rectal and skin temperatures. J Appl Physiol 31(3):484–489

    Article  CAS  PubMed  Google Scholar 

  • Crawford A (1788) Experiments and observations on animal heat and inflammation of combustible bodies. Johnson, London

    Google Scholar 

  • Dauncey MJ (1980) Metabolic effects of altering the 24 h energy intake in man, using direct and indirect calorimetry. Br J Nutr 43(2):257–269

    Article  CAS  PubMed  Google Scholar 

  • Dauncey MJ, Bingham SA (1983) Dependence of 24 h energy expenditure in man on the composition of the nutrient intake. Br J Nutr 50(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Dauncey MJ, Murgatroyd PR, Cole TJ (1978) A human calorimeter for the direct and indirect measurement of 24 h energy expenditure. Br J Nutr 39(3):557–566

    Article  CAS  PubMed  Google Scholar 

  • Day R, Hardy JD (1942) Respiratory metabolism in infancy and in childhood. XXIV. A calorimeter for measuring the heat loss of premature infants. Am J Dis Children 63:1086–1095

    Article  CAS  Google Scholar 

  • Deighton T (1926) A new calorimeter for use with young farm animals. J Agric Sci (Cambridge) 16:376–382

    Article  CAS  Google Scholar 

  • Deighton T (1939) A study of the metabolism of fowls. I. A calorimeter for teh directed determination of the metabolism of fowls. J Agric Sci (Cambridge) 29:431–451

    Article  CAS  Google Scholar 

  • DuBois EF (1912) The absorption of food in typhoid fever. Arch Intern Med 10:177

    Article  Google Scholar 

  • Dubois EF (1916) Studies of the basal metabolism in disease and their importance in clinical medicine. Boston Med Surg J 174:864

    Article  Google Scholar 

  • DuBois EF (1919) The basal metabolism as a guide in the diagnosis and treatment of thyroid disease. Med Clin N Am 2:1201

    Google Scholar 

  • DuBois E (1937) The mechanism of heat loss and temperature regulation. Stanford University Press, Stanford

  • DuBois EF (1950) 50 years of physiology in America; a letter to the editor. Annu Rev Physiol 12:1–6. doi:10.1146/annurev.ph.12.030150.000245

    Article  CAS  PubMed  Google Scholar 

  • DuBois EF, Coleman W (1915) Clinical calorimetry VII. Calorimetric observations on the metabolism of typhoid patients with and without food. Arch Intern Med 15:887

    Google Scholar 

  • DuBois D, Dubois EF (1915) Fifth paper: the measurement of the surface area of man. Arch Intern Med XV:868–881

    Article  Google Scholar 

  • DuBois E, Riddle O (1958) Francis gano benedict, 1870–1957—a biographical memoir. Biographical Memoirs. National Academy of Sciences, pp 65–99

  • Dubois EF, Veeder BS (1910) The total energy requirements in diabetes mellitus. Arch Intern Med 5:37

    Article  Google Scholar 

  • Durnin JV, Edholm OG, Miller DS, Waterlow JC (1973) How much food does man require? Nature 242(5397):418

    Article  CAS  PubMed  Google Scholar 

  • Editorial (1915) Editorial: clinical calorimetry in the United States. JAMA LXIV 25:2069–2070

    Google Scholar 

  • Editorial (1965) Editorial: Max Rubner—1854–1932. Energy physiologist. JAMA 194(1):86–87

    Google Scholar 

  • Fernandez PG, Snedden W, Snellen JW, Galway AB, Nath C (1986) Increased metabolic heat production following chronic alpha-methyldopa therapy in hypertensives. Can J Physiol Pharm 64(2):138–144

    Article  CAS  Google Scholar 

  • Gagnon D, Kenny GP (2011) Exercise-rest cycles do not alter local and whole body heat loss responses. Am J Physiol Regul Integr Comp Physiol 300(4):R958–R968

    Article  CAS  PubMed  Google Scholar 

  • Gagnon D, Kenny GP (2012) Sex differences in thermoeffector responses during exercise at fixed requirements for heat loss. J Appl Physiol 113(5):746–757

    Article  PubMed  Google Scholar 

  • Gagnon D, Jay O, Lemire B, Kenny GP (2008) Sex-related differences in evaporative heat loss: the importance of metabolic heat production. Eur J Appl Physiol 104(5):821–829

    Article  PubMed  Google Scholar 

  • Ganio MS, Gagnon D, Stapleton J, Crandall CG, Kenny GP (2012) Effect of human skin grafts on whole-body heat loss during exercise heat stress: a case report. J Burn Care Res 34(4):e263–e270

    Article  Google Scholar 

  • Garrow JS (1973) Diet and obesity. Proc R Soc Med 66(7):642–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garrow JS (1974) Energy balance and obesity in man. North Holland Publishing Company, Amsterdam

    Google Scholar 

  • Garrow JS, Murgatroyd P, Toft R, Warwick P (1977) A direct calorimeter for clinical use (proceedings). J Physiol 267(1):15P–16P

    CAS  PubMed  Google Scholar 

  • Gephart AB, Dubois EF (1915) Fourth paper: the determination of the basal metabolism of normal men and the effect of food. Arch Intern Med XV:835–867

    Article  Google Scholar 

  • Glushko AA, Gorodinskii SM, Orekhov BV (1976) Human calorimetry in sealed hermetic enclosures. Kosm Biol Aviakosm Med 10(4):64–69

    CAS  PubMed  Google Scholar 

  • Gorodinskii SM, Glushko AA, Orekhov BV (1976) Human calorimetry in protective garments. Mashinostroyeniye, Moscow

    Google Scholar 

  • Hardy JD (1934) The radiation of heat from the human body. I. An instrument for measuring the radiation and surface temperature of skin. J Clin Investig 13:593–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy JD, Dubois EF (1938) Basal metabolism, radiation, convection and evaporation at temperature from 22 to 35 C. J Nutr 15:477–492

    Article  Google Scholar 

  • Hardy JD, Stolwijk JA (1966) Partitional calorimetric studies of man during exposures to thermal transients. J Appl Physiol (1985) 21(6):1799–1806

    Article  CAS  Google Scholar 

  • Hill AV, Hill AM (1914) A self-recording calorimeter for large animals. J Physiol (Lond) xiii:xiv

    Google Scholar 

  • Holmes FL (1985) Lavoisier and the chemistry of life: an exploration of scientific creativity. University of Wisconsin Press, Madison

    Google Scholar 

  • Horstman DH, Horvath SM (1972) Cardiovascular and temperature regulatory changes during progressive dehydration and euhydration. J Appl Physiol (1985) 33(4):446–450

    Article  CAS  Google Scholar 

  • Howland J (1912) Direct calorimetry of infants with a comparison of the results obtained by this and other methods. Trans 15th Int Congr Hyg Dermatol 2:438–451

    Google Scholar 

  • Irsigler K, Veitl V, Sigmund A, Tschegg E, Kunz K (1979) Calorimetric results in man: energy output in normal and overweight subjects. Metabolism 28(11):1127–1132

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen S, Johansen O, Garby L (1982) 5.8 m3 human heat-sink calorimeter with online data acquisition, processing and control. Med Biol Eng Comput 20(1):29–36

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen S, Johansen O, Garby L (1985) A 24-m3 direct heat-sink calorimeter with on-line data acquisition, processing, and control. Am J Physiol 249(4 Pt 1):E416–E432

    CAS  PubMed  Google Scholar 

  • Jay O, Gariepy LM, Reardon FD, Webb P, Ducharme MB, Ramsay T, Kenny GP (2007a) A three-compartment thermometry model for the improved estimation of changes in body heat content. Am J Physiol Regul Integr Comp Physiol 292(1):R167–R175

    Article  CAS  PubMed  Google Scholar 

  • Jay O, Reardon FD, Webb P, Ducharme MB, Ramsay T, Nettlefold L, Kenny GP (2007b) Estimating changes in mean body temperature for humans during exercise using core and skin temperatures is inaccurate even with a correction factor. J Appl Physiol 103(2):443–451

    Article  PubMed  Google Scholar 

  • Jay O, DuCharme MB, Webb P, Reardon FD, Kenny GP (2010) Estimating changes in volume-weighted mean body temperature using thermometry with an individualized correction factor. Am J Physiol Regul Integr Comp Physiol 299(2):R387–R394

    Article  CAS  PubMed  Google Scholar 

  • Jelenko C 3rd, Wheeler ML, Callaway BD (1979) Studies in burns, XVI: the effect of surgical trauma on metabolic heat production. Am Surg 45(5):314–318

    PubMed  Google Scholar 

  • Jequier E (1975) Direct calorimetry: a new clinical approach for measuring thermoregulatory responses in man. Bibl Radiol 6:185–190

    Google Scholar 

  • Jequier E (1981) Long term measurement of energy expenditure in man: Direct or indirect calorimetry? In: Bjornstorp P, Cairella M, Howard AN (eds) Recent advances in obesity research III. J. Libbey, London, pp 130–135

    Google Scholar 

  • Jequier E, Gygax PH, Pittet P, Vannotti A (1974) Increased thermal body insulation: relationship to the development of obesity. J Appl Physiol 1985 36(6):674–678

    CAS  Google Scholar 

  • Kenny GP, Jay O (2013) Thermometry, calorimetry, and mean body temperature during heat stress. Compr Physiol 3:1–31

    Google Scholar 

  • Kenny GP, Journeay WS (2010) Human thermoregulation: separating thermal and nonthermal effects on heat loss. Front Biosci 15:259–290

    Article  CAS  Google Scholar 

  • Kenny GP, McGinn R (2016) Restoration of thermoregulation after exercise. J Appl Physiol (1985) 122(4):933–944

    Article  Google Scholar 

  • Kenny GP, Webb P, Ducharme MB, Reardon FD, Jay O (2008) Calorimetric measurement of postexercise net heat Loss and residual body heat storage. Med Sci Sports Exerc 40(9):1629–1636

    Article  PubMed  Google Scholar 

  • Kenny GP, Dorman LE, Webb P, Ducharme MB, Gagnon D, Reardon FD, Hardcastle SG, Jay O (2009) Heat balance and cumulative heat storage during intermittent bouts of exercise. Med Sci Sports Exerc 41(3):588–596

    Article  PubMed  Google Scholar 

  • Kenny GP, Stapleton JM, Yardley JE, Boulay P, Sigal RJ (2013) Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc 45(10):1906–1914

    Article  CAS  PubMed  Google Scholar 

  • Kenny GP, Flouris AD, Dervis S, Friesen BJ, Sigal RJ (2015) Older adults experience greater levels of thermal and cardiovascular strain during extreme heat exposures. Med Sci Sports Exerc 46(5):S396

    Google Scholar 

  • Kenny GP, Sigal RJ, McGinn R (2016) Body temperature regulation in diabetes. Temperature (Austin) 3(1):119–145

    Article  Google Scholar 

  • Kleiber M (1935) The California apparatus for respiration trials with large animals. Hilgardia 9:1–70

    Article  CAS  Google Scholar 

  • Kleiber M (1961) The fire of life—an introduction to animal energetics. Wiley, New York

    Google Scholar 

  • Larose J, Boulay P, Sigal RJ, Wright HE, Kenny GP (2013a) Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLoS One 8(12):e83148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larose J, Wright HE, Sigal RJ, Boulay P, Hardcastle S, Kenny GP (2013b) Do older females store more heat than younger females during exercise in the heat? Med Sci Sports Exerc 45(12):2265–2276

    Article  PubMed  Google Scholar 

  • Larose J, Wright HE, Stapleton J, Sigal RJ, Boulay P, Hardcastle S, Kenny GP (2013c) Whole-body heat loss is reduced in older males during short bouts of intermittent exercise. Am J Physiol 305(6):R619–R629

    CAS  Google Scholar 

  • Larose J, Boulay P, Wright-Beatty HE, Sigal RJ, Hardcastle S, Kenny GP (2014) Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions. J Appl Physiol (1985) 117(1):69–79

    Article  Google Scholar 

  • Lavoisier AL, Laplace PS (1780) Histoire de l’Académie des Sciences. Année, p 355

  • Lefèvre J (1911) Chaleur animal et bioenergetique. Masson et Cie, Paris

    Google Scholar 

  • Lodwig TH (1974) The ice calorimeter of Lavoisier and Laplace and some of its critics. Ann Sci 31:1–18

    Article  CAS  Google Scholar 

  • Lusk G (1906) The elements of the science of nutrition. Saunders, Philadelphia

    Google Scholar 

  • Lusk G (1915a) First paper: a respiration calorimeter for the study of disease. Arch Intern Med XV:793–804

    Article  Google Scholar 

  • Lusk G (1915b) Eigth paper on the diabetic respiratory quotient. Arch Intern Med XV:939–944

    Article  Google Scholar 

  • Lusk G (1932) A tribute to the life and work of Max Rubner. Science 76(1963):129–135. doi:10.1126/science.76.1963.129

    Article  CAS  PubMed  Google Scholar 

  • McLean JA, Tobin G (1987) Animal and human calorimetry. Cambridge University Press, Cambridge

    Google Scholar 

  • McManus C, Newhouse H, Seitz S, Nixon D, Poppendiek H, Heymsfield S (1984) Human gradient-layer calorimeter: development of an accurate and practical instrument for clinical studies. JPEN J Parenter Enter Nutr 8(3):317–320

    Article  CAS  Google Scholar 

  • Meade RD, Poirier MP, Flouris AD, Hardcastle SG, Kenny GP (2016) Do the threshold limit values for work in hot conditions adequately protect workers? Med Sci Sports Exerc 48(6):1187–1196

    Article  PubMed  Google Scholar 

  • Meis SJ, Dove EL, Bell EF, Thompson CM, Glatzl-Hawlik MA, Gants AL, Kim WK (1994) A gradient-layer calorimeter for measurement of energy expenditure of infants. Am J Physiol 266(3 Pt 2):R1052–R1060

    CAS  PubMed  Google Scholar 

  • Mitchell HH, Hamilton TS (1932) The effect of the amount of feed consumed by cattle on the utilisation of its energy content. J Agric Res 45:163–191

    CAS  Google Scholar 

  • Mitchell D, Wyndham CH, Vermeulen AJ, Hodgson T, Atkins AR, Hofmeyr HS (1969) Radiant and convective heat transfer of nude men in dry air. J Appl Physiol (1985) 26(1):111–118

    Article  CAS  Google Scholar 

  • Mollgard H, Anderson AC (1917) Respiration apparatus: its significance and use in experiments with dairy cattle. Beretning fra Forsogslaboratoriet Kobenhaven 94:1–180

    Google Scholar 

  • Mount LE (1967) The heat loss from new-born pigs to the floor. Res Vet Sci 8(2):175–186

    Article  CAS  PubMed  Google Scholar 

  • Murlin JR, Burton AC (1935) Human calorimetry I. A semi-automatic respiration calorimeter. J Nutr 9:233–260

    Article  CAS  Google Scholar 

  • Nadel ER, Bergh U, Saltin B (1972) Body temperatures during negative work exercise. J Appl Physiol 33(5):553–558

    Article  CAS  PubMed  Google Scholar 

  • Pahud P, Ravussin E, Jequier E (1980) Energy expended during oxygen deficit period of submaximal exercise in man. J Appl Physiol Respir Environ Exerc Physiol 48(5):770–775

    CAS  PubMed  Google Scholar 

  • Poirier MP, Gagnon D, Friesen BJ, Hardcastle SG, Kenny GP (2015) Whole-body heat exchange during heat acclimation and its decay. Med Sci Sports Exerc 47(2):390–400

    Article  PubMed  Google Scholar 

  • Poncet E, Dahlberg L (2011) The legacy of Henri Victor Regnault in the arts and sciences. Int J Arts Sci 4(13):377–400

    Google Scholar 

  • Poppendiek H, Hody GL (1972) Design considerations and applications of gradient layer calorimeters for use in biological heat production measurement. In: Plumb HH (ed) Temperature—its measurement and control in science and industry, vol 2079–2088. Int Soc Am, Pittsburgh

    Google Scholar 

  • Ravussin E, Bogardus C (1982) Thermogenic response to insulin and glucose infusions in man: a model to evaluate the different components of the thermic effect of carbohydrate. Life Sci 31(18):2011–2018

    Article  CAS  PubMed  Google Scholar 

  • Ravussin E, Burnand B, Schutz Y, Jequier E (1982) Twenty-four-hour energy expenditure and resting metabolic rate in obese, moderately obese, and control subjects. Am J Clin Nutr 35(3):566–573

    Article  CAS  PubMed  Google Scholar 

  • Reardon FD, Leppik KE, Wegmann R, Webb P, Ducharme MB, Kenny GP (2006) The Snellen human calorimeter revisited, re-engineered and upgraded: design and performance characteristics. Med Biol Eng Comput 44(8):721–728

    Article  PubMed  Google Scholar 

  • Regnault HV, Reiset J (1849) Recherches chimiques sur la respiration des animaux des diverses classes. Ann Chim Phys, série 3, tome 26, 299–519

  • Riche JA, Soderstrom GF (1915) The respiration calorimeter of the Russell Sage Institute of Pathology in Bellevue Hospital. Arch Intern Med 15:805–828

    Article  CAS  Google Scholar 

  • Ritzman EG, Benedict FG (1929) Simplified technique and apparatus for measuring energy requirements of cattle. N H Agric Exp Stn Bull 240, pp 30

  • Rubner M (1883) The effect of body size on food and energy metabolism. Z Biol 19:535–562

    Google Scholar 

  • Rubner M (1894) Die quelle de thierschen warme. Zeitschrift fur biologie 30:73–142

    Google Scholar 

  • Saltin B, Gagge AP, Stolwijk JA (1968) Muscle temperature during submaximal exercise in man. J Appl Physiol 25(6):679–688

    Article  CAS  PubMed  Google Scholar 

  • Saltin B, Gagge AP, Stolwijk JA (1970) Body temperatures and sweating during thermal transients caused by exercise. J Appl Physiol 28(3):318–327

    Article  CAS  PubMed  Google Scholar 

  • Sawka MN, Castellani JW (2007) How hot is the human body? J Appl Physiol 103(2):419–420

    Article  PubMed  Google Scholar 

  • Seale JL (1995) Energy expenditure measurements in relation to energy requirements. Am J Clin Nutr 62(5 Suppl):1042S–1046S

    Article  CAS  PubMed  Google Scholar 

  • Seale JL, Rumpler WV (1997) Synchronous direct gradient layer and indirect room calorimetry. J Appl Physiol (1985) 83(5):1775–1781

    Article  CAS  Google Scholar 

  • Seale JL, Rumpler WV, Moe PW (1991) Description of a direct-indirect room-sized calorimeter. Am J Physiol 260(2 Pt 1):E306–E320

    CAS  PubMed  Google Scholar 

  • Snellen JW (1966) Mean body temperature and the control of thermal sweating. Acta Physiol Pharmacol Neerl 14(2):99–174

    CAS  PubMed  Google Scholar 

  • Snellen JW (1969) The discrepancy between thermometry and calorimetry during exercise. Pflug Arch 310(1):35–44

    Article  CAS  Google Scholar 

  • Snellen JW (1972) Set point and exercise. In: Bligh J, Moore RE (eds) Essays on temperature regulation. North Holland, Amsterdam, pp 139–148

    Google Scholar 

  • Snellen JW (2000) An improved estimation of mean body temperature using combined direct calorimetry and thermometry. Eur J Appl Physiol 82(3):188–196

    Article  CAS  PubMed  Google Scholar 

  • Snellen JW, Mitchell D (1972) Calorimetric analysis of the effect of drinking saline solution on whole-body sweating. II. Response to different volumes, salinities and temperatures. Pflug Arch 331(2):134–144

    Article  CAS  Google Scholar 

  • Snellen JW, Mitchell D, Wyndham CH (1970) Heat of evaporation of sweat. J Appl Physiol (1985) 29(1):40–44

    Article  CAS  Google Scholar 

  • Snellen JW, Mitchell D, Busansky M (1972) Calorimetric analysis of the effect of drinking saline solution on whole-body sweating. I. An attempt to measure average body temperature. Pflug Arch 331(2):124–133

    Article  CAS  Google Scholar 

  • Snellen JW, Chang KS, Smith W (1983) Technical description and performance characteristics of a human whole-body calorimeter. Med Biol Eng Comput 21(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Spinnler G, Jequier E, Favre R, Dolivo M, Vannotti A (1973a) Human calorimeter with a new type of gradient layer. J Appl Physiol (1985) 35(1):158–165

    Article  CAS  Google Scholar 

  • Spinnler G, Jequier E, Favre R, Dolivo M, Vannotti A (1973b) Human calorimeter with a new type of gradient layer. J Appl Physiol 35(1):158–165

    Article  CAS  PubMed  Google Scholar 

  • Stapleton J, Gagnon D, Kenny GP (2010) Short-term exercise training does not improve whole-body heat loss when rate of metabolic heat production is considered. Eur J Appl Physiol 109(3):437–446

    Article  PubMed  Google Scholar 

  • Stapleton JM, Yardley JE, Boulay P, Sigal RJ, Kenny GP (2013) Whole-body heat loss during exercise in the heat is not impaired in type 1 diabetes. Med Sci Sports Exerc 45(9):1656–1664

    Article  PubMed  Google Scholar 

  • Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, Kenny GP (2015a) Aging impairs heat loss, but when does it matter? J Appl Physiol (1985) 118(3):299–309

    Article  Google Scholar 

  • Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, Kenny GP (2015b) At what level of heat load are age-related impairments in the ability to dissipate heat evident in females? PLoS One 10(3):e0119079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stolwijk JA, Hardy JD (1966a) Partitional calorimetric studies of responses of man to thermal transients. J Appl Physiol (1985) 21(3):967–977

    Article  CAS  Google Scholar 

  • Stolwijk JA, Hardy JD (1966b) Temperature regulation in man—a theoretical study. Pflug Arch Gesamte Physiol Menschen Tiere 291(2):129–162

    Article  CAS  Google Scholar 

  • Swift RW, Barron GP, Fisher KH, French CE, Hartsook EW, Hershberger TV, Keck E, Long TA, Magruder ND (1958) The effect of high versus low protein equicaloric diets on the heat production of human subjects. J Nutr 65(1):89–102

    Article  CAS  PubMed  Google Scholar 

  • Tiemann J (1969) A respiration calorimeter for the determination of combustion transformation degree in the human organism. Elektromed Biomed Tech 14(4):135–145

    Article  CAS  PubMed  Google Scholar 

  • Tschegg E, Sigmund A, Veitl V, Schmid P, Irsigler K (1979) An isothermic, gradient-free, whole-body calorimeter for long-term investigations of energy balance in man. Metabolism 28(7):764–770

    Article  CAS  PubMed  Google Scholar 

  • Tschegg E, Sigmund A, Veitl V, Irsigler K (1981) A whole-body calorimeter for long-term measurements in man. J Phys E 14(5):550–554

    Article  CAS  PubMed  Google Scholar 

  • Vallerand AL, Savourey G, Hanniquet AM, Bittel JH (1992) How should body heat storage be determined in humans: by thermometry or calorimetry? Eur J Appl Physiol Occup Physiol 65(3):286–294

    Article  CAS  PubMed  Google Scholar 

  • Veitl V, Irsigler K (1983) The clinical use of direct calorimetry for measuring energy expenditure. Infusionsther Klin Ernahr 10(5):255–258

    CAS  PubMed  Google Scholar 

  • Visser J, Hodgson T (1960a) The design of a human calorimeter for the determination of body heat storage. S Afr J Mech Eng 9:243–260

    Google Scholar 

  • Visser J, Hodgson T (1960b) The design of a human calorimeter for the determination of body heat storage. S Afr Mech Eng 9:243–260

    Google Scholar 

  • Voit C (1866) Zeitschrift fur biologie II:307

    Google Scholar 

  • Webb P (1985) Human calorimeters. Praeger, New York

    Google Scholar 

  • Webb P (1998) Heat storage during exercise, especially in muscle. In: Hodgdon JA (ed) 8th International conference on environmental ergonomics, San Diego, CA, USA, pp 121–124

  • Webb P, Troutman SJ Jr, Annis JF (1970) Automatic cooling in water cooled space suits. Aerosp Med 41(3):269–277

    CAS  PubMed  Google Scholar 

  • Webb P, Annis JF, Troutman SJ Jr (1972) Human calorimetry with a water-cooled garment. J Appl Physiol 32(3):412–418

    Article  CAS  PubMed  Google Scholar 

  • Webb P (1981) Energy expenditure and fat-free mass in men and women. Am J Clin Nutr 34(9):1816–1826

    Article  CAS  PubMed  Google Scholar 

  • Webb P (1986) Direct calorimetry and the energetics of exercise and weight loss. Med Sci Sports Exerc 18(1):3–5

    Article  CAS  PubMed  Google Scholar 

  • Webb P, Saris WH, Schoffelen PF, Van Ingen Schenau GJ, Ten Hoor F (1988) The work of walking: a calorimetric study. Med Sci Sports Exerc 20(4):331–337

    Article  CAS  PubMed  Google Scholar 

  • Webb P, Nagle FJ, Wanta DM (1991) Heat regulation during exercise with controlled cooling. Eur J Appl Physiol Occup Physiol 62(3):193–197

    Article  CAS  PubMed  Google Scholar 

  • Webster JD, Welsh G, Pacy P, Garrow JS (1986) Description of a human direct calorimeter, with a note on the energy cost of clerical work. Br J Nutr 55(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Whipp BJ, Wasserman K (1969) Efficiency of muscular work. J Appl Physiol 26(5):644–648

    Article  CAS  PubMed  Google Scholar 

  • Williams HB (1912) Animal calorimetry first paper. a small respiration calorimeter. J Biol Chem 12(3):317–347

    Article  CAS  Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1936a) The determination of radiation and convection exchanges by partitional calorimetry. Am J Physiol 116:669–684

    Article  CAS  Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1936b) A new method of partitional calorimetry. Am J Physiol 116:641–655

    Article  CAS  Google Scholar 

  • Winslow CEA, Herrington LP, Gagge AP (1937) Physiological reactions of the human body to varying environmental temperatures. Am J Physiol 120(1):1–21

    Article  CAS  Google Scholar 

  • Young AC, Burns HL, Quinton WF, Carlson LD (1951) Temperature gradient calorimetry. Wright-Pattern AFB, Ohio

    Google Scholar 

  • Young AC, Carlson LD, Burns HL (1955) Regional heat loss by temperature gradient calorimetry. Arctic Aeromedical Laboratory, Ladd Air Force Base, Alaska

    Google Scholar 

Download references

Acknowledgements

Support for this work is provided in part by the Natural Sciences and Engineering Research Council of Canada (funds held by Dr. Glen P. Kenny). G. P. Kenny is supported by a University of Ottawa Research Chair Award. This work is presented in memory of Dr. Paul Webb (MD). Dr. Webb was born in Willoughby, Ohio, on Dec. 2, 1923. He received his M.D. from the University of Virginia in 1943 and an M.S. in physiology from the University of Washington in 1949. He served in the U.S. Army from 1948 to 1950, taught physiology at University of Oklahoma medical school from 1952 to 1954, and worked at the Air Force Biomedical Laboratory at Wright-Patterson Air Force Base from 1954 to 1958. In 1959, he founded Webb Associates, a research company, in Yellow Springs. Webb Associates performed several major research studies for the U.S. Department of Agriculture, the Office of Naval Research and the Air Force. Dr. Webb closed his Yellow Springs laboratory in 1982 and moved to France. There, he performed experiments at Hospital Bichat in Paris. From 1984 to 1988, he worked in various technical companies and universities in Norway, The Netherlands and Sweden. During his career, Dr. Webb received a great many awards for his work; two of these awards are the Fritz J. Russ Award in bioengineering and the Jeffries Aerospace Medicine and Life Sciences Research Award from the American Institute of Aeronautics and Astronautics, notification of which he received a short time before his death on May 18, at the age of 90 (Online edition of the Yellow Springs News, May 29, 2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen P. Kenny.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenny, G.P., Notley, S.R. & Gagnon, D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol 117, 1765–1785 (2017). https://doi.org/10.1007/s00421-017-3670-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-017-3670-5

Keywords

Navigation