Skip to main content
Log in

Precision and resolution in laser direct microstructuring with bursts of picosecond pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser sources facilitate various applications, including efficient material removal in different scientific and industrial applications. Commercially available laser systems in the field typically use a focused laser beam of 10–20 μm in diameter. In line with the ongoing trends of miniaturization, we have developed a picosecond fiber laser-based system combining fast beam deflection and tight focusing for material processing and optical applications. We have predicted and verified the system’s precision, resolution, and minimum achievable feature size for material processing applications. The analysis of the laser’s performance requirements for the specific applications of high-precision laser processing is an important aspect for further development of the technique. We have predicted and experimentally verified that maximal edge roughness of single-micrometer-sized features was below 200 nm, including the laser’s energy and positioning stability, beam deflection, the effect of spot spacing, and efficient isolation of mechanical vibrations. We have demonstrated that a novel fiber laser operating regime in bursts of pulses increases the laser energy stability. The results of our research improve the potential of fiber laser sources for material processing applications and facilitate their use through enabling the operation at lower pulse energies in bursts as opposed to single pulse regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996)

    Article  ADS  Google Scholar 

  2. M. Lenzner, J. Krüger, W. Kautek, F. Krausz, Appl. Phys. A 68, 369 (1999)

    Article  ADS  Google Scholar 

  3. B. Sallé, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, A. Semerok, Appl. Phys. A 69, S381 (1999)

    Article  ADS  Google Scholar 

  4. F. Korte, J. Serbin, J. Koch, A. Egbert, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 229 (2003)

    ADS  Google Scholar 

  5. L. Jiang, H.-L. Tsai, J. Heat Transf 128, 926 (2006)

    Article  Google Scholar 

  6. A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, A. Tünnermann, Opt. Lett. 34, 3304 (2009)

    Article  ADS  Google Scholar 

  7. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  8. D. Bäuerle, in Laser Processing and Chemistry (Springer, Berlin, 2011), pp. 237–278

    Book  Google Scholar 

  9. K. Sugioka, Y. Cheng, Light Sci. Appl. 3, e149 (2014)

    Article  Google Scholar 

  10. J. Schille, L. Schneider, U. Loeschner, Appl. Phys. A 120, 847 (2015)

    Article  ADS  Google Scholar 

  11. J. Schille, L. Schneider, S. Kraft, L. Hartwig, U. Loeschner, Appl. Phys. A 122, 644 (2016)

    Article  ADS  Google Scholar 

  12. C.B. Campbell, T.M. Lehecka, J.G. Thomas, V.V. Semak, in Proceedings of ICALEO 2008 (2008), pp. 181–186

  13. R. Knappe, H. Haloui, A. Seifert, A. Weis, A. Nebel, in Proceedings of SPIE 7585 (2010), p. 75850H-6

  14. C. Gaudiuso, H. Kämmer, F. Dreisow, A. Ancona, A. Tünnermann, S. Nolte, in Proceedings of SPIE 9740 (2016), p. 974017-8

  15. C. Kerse, H. Kalaycıoğlu, P. Elahi, B. Çetin, D.K. Kesim, Ö Akçaalan, S. Yavaş, M.D. Aşık, B. Öktem, H. Hoogland, R. Holzwarth, F.Ö. Ilday, Nature 537, 84 (2016)

    Article  ADS  Google Scholar 

  16. J. Mur, J. Petelin, N. Osterman, R. Petkovšek, J. Phys. Appl. Phys. 50, 325104 (2017)

    Article  Google Scholar 

  17. J. Mur, L. Pirker, N. Osterman, R. Petkovšek, Opt. Express 25, 26356 (2017)

    Article  ADS  Google Scholar 

  18. P. Lickschat, A. Demba, S. Weissmantel, Appl. Phys. A 123, 137 (2017)

    Article  ADS  Google Scholar 

  19. N. Anscombe, Nat. Photon. 4, 22 (2010)

    Article  ADS  Google Scholar 

  20. Y. Temiz, R.D. Lovchik, G.V. Kaigala, E. Delamarche, Microelectron. Eng. 132, 156 (2015)

    Article  Google Scholar 

  21. C. Jauregui, J. Limpert, A. Tünnermann, Nat. Photon. 7, 861 (2013)

    Article  ADS  Google Scholar 

  22. J. Petelin, B. Podobnik, R. Petkovšek, Appl. Opt 54, 4629 (2015)

    Article  ADS  Google Scholar 

  23. J. Mur, B. Podobnik, I. Poberaj, Opt. Laser Technol. 88, 140 (2017)

    Article  ADS  Google Scholar 

  24. N. Bellini, R. Geremia, D. Karnakis, Appl. Phys. A 123, 346 (2017)

    Article  ADS  Google Scholar 

  25. A.J. Taylor, J.M. Wiesenfeld, G. Eisenstein, R.S. Tucker, Appl. Phys. Lett. 49, 681 (1986)

    Article  ADS  Google Scholar 

  26. R. Petkovšek, V. Agrež, Opt. Express 22, 1366 (2014)

    Article  ADS  Google Scholar 

  27. K. Ellmer, Nat. Photon. 6, 809 (2012)

    Article  ADS  Google Scholar 

  28. R.J. Moerland, J.P. Hoogenboom, Optica 3, 112 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding received from the Slovenian Research Agency ARRS (Grants L2-6780 and L2-8183) and from the Ministry of Education, Science and Sport, Republic of Slovenia (Grant SPS GOSTOP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaka Mur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mur, J., Petkovšek, R. Precision and resolution in laser direct microstructuring with bursts of picosecond pulses. Appl. Phys. A 124, 62 (2018). https://doi.org/10.1007/s00339-017-1490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1490-4

Navigation