Skip to main content
Log in

Gum acacia polysaccharide-based pH sensitive gels for targeted delivery of neridronate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The preparation of polysaccharide-based gels from a combination of natural and synthetic polymers results in polymer networks with unique physicochemical properties. Polysaccharide-based gels were prepared from a combination of gum acacia, a polysaccharide, and synthetic polymers using the free radical polymerization technique. The gels were characterized by XRD, DSC, SEM, and FTIR. The swelling abilities of the gels were performed at pH 1.2 and 7.4. Release kinetic studies of neridronate from the prepared gels were performed and the release mechanism was found to be super case transport II at pH 1.2 and pH 7.4. The gels were pH sensitive and the release profile of neridronate from the gels network was influenced by the degree of cross-linking of their network and pH. The preliminary results suggest that these gels are promising devices for targeted delivery of neridronate to the gastrointestinal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gatti D, Rossini M, Viapiana O, Idolazzi L, Adami S (2013) Clinical development of neridronate: potential for new applications. Ther Clin Risk Manag 9:139–147

    Article  CAS  Google Scholar 

  2. Ebetino FH, Hogan AM, Sun S, Tsoumpra MK, Duan X, Triffitt JT, Kwaasi AA, Dunford JE, Barnett BL, Oppermann U, Lundy MW, Boyde A, Kashemirov BA, McKenna CE, Russell RG (2011) The relationship between the chemistry and biological activity of the bisphosphonates. Bone 49:20–33

    Article  CAS  Google Scholar 

  3. Ebetino FH, Bayless AV, Amburgey J, Ibbotson KJ, Dansereau S, Ebrahimpour A (1996) Elucidation of a pharmacore for the bisphosphonate mechanism of bone antiresorptive activity. Phosphorus Sulfur Silicon Relat Elem 109:217–220

    Article  Google Scholar 

  4. Gutta R, Louis PJ (2007) Bisphosphonates and osteonecrosis of the jaws: science and rationale. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 104:186–193

    Article  Google Scholar 

  5. Case-Lo C. Intravenous medication application. http://www.healthline.com/health/intravenous-medication-administration. Accessed 22nd Dec 2015

  6. Weinstein SM (2007) Plumer’s principles and practice of intravenous therapy, 8th edn. Lippincott Williams and Wilkins, USA, p 469

    Google Scholar 

  7. Breege Smithers. Intrvenous therapy principles of care. http://www.cmft.nhs.uk/directorates/mentor/documents/IVtherapyBS.pdf. Accessed 22nd Dec 2015

  8. Bhardwaj TR, Kanwar M, Lal R, Gupta A (2000) Natural gums and modified natural gums as sustained-release carriers. Drug Dev Ind Pharm 26:1025–1038

    Article  CAS  Google Scholar 

  9. Pal S, Das R (2013) Polysaccharide-based graft copolymers for biomedical applications. In: Kali S, Sabaa MW (eds) Polysaccharide-based graft copolymers, 1st edn. Springer-Verlag, Berlin Heidelberg, pp 325–345

    Chapter  Google Scholar 

  10. Banerjee S, Ray S, Maiti S, Sen KK, Bhattacharyya UK, Kaity S, Ghosh A (2010) Interpenetrating polymer network (IPN): a novel biomaterial. Int J Appl Pharmaceutics 2:28–34

    Google Scholar 

  11. Banerjee S, Siddiqui L, Bhattacharya SS, Kaity S, Ghosh A, Chattopadhyay P, Pandey A, Singh L (2012) Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int J Biol Macromol 50:198–206

    Article  CAS  Google Scholar 

  12. Changez M, Burugapalli K, Koul V, Chowdary V (2003) The effect of composition of poly(acrylic acid)–gelatin hydrogel on gentamicin sulphate release: in vitro. Biomaterials 24:527–536

    Article  CAS  Google Scholar 

  13. Kulkarni AR, Soppimath KM, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxyl loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51:127–133

    Article  CAS  Google Scholar 

  14. Rokhade AP, Agnihotri SA, Patil SA, Mallikarjun NN, Kulkarni PV, Aminabhavi TM (2006) Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydr Polym 65:243–252

    Article  CAS  Google Scholar 

  15. Zhao S-P, Li L-Y, Cao M-J, Xu W-L (2011) pH- and thermo-sensitive semi-IPN hydrogels composed of chitosan, N-isopropylacrylamide and poly(ethylene glycol)-co-poly(e-caprolactone) macromer for drug delivery. Polym Bull 66:1075–1087

    Article  CAS  Google Scholar 

  16. Gum acacia. http://www.hobbytakt.com/products/3856466109.pdf. Accessed 2nd July 2015

  17. Deogade UM, Deshmukh VN, Sakarkar DM (2012) Natural gums and mucilage’s in NDDS: applications and recent approaches. Int J Pharm Tech Res 4:799–814

    CAS  Google Scholar 

  18. Sahiner M, Sagbas S, Bitlisli BO (2015) p(AAm/TA)-based IPN hydrogel films with antimicrobial and antioxidant properties for biomedical applications. J Appl Polym Sci. doi:10.1002/APP.41876

    Google Scholar 

  19. Özbaş Z, Gϋrdağ G (2015) Swelling kinetics, mechanical properties, and release characteristics of chitosan-based semi-IPN hydrogels. J Appl Polym Sci. doi:10.1002/APP.41886

    Google Scholar 

  20. Chen Y, Peng C, Lu Y, Liu W, Xu W (2015) Responsiveness and release characteristic of semi-IPN hydrogels consisting of nano-sized clay crosslinked poly(dimethylaminoethyl methacrylate) and linear carboxymethyl chitosan. J Nanosci Nanotechnol 15:164–171

    Article  CAS  Google Scholar 

  21. Sharma K, Kumar V, Kaith BS, Som S, Kumar V, Pandey A, Kalia S, Swart HC (2015) Synthesis of biodegradable Gum ghatti based poly(methacrylic acid-aniline) conducting IPN hydrogel for controlled release of amoxicillin trihydrate. Ind Eng Chem Res 54:1982–1991

    Article  CAS  Google Scholar 

  22. Steffensen SL, Vestergaard MH, Møller EH, Groenning M, Alm M, Franzyk H, Nielsen HM (2015) Soft hydrogels interpenetrating silicone—a polymer network for drug-releasing medical devices. J Biomed Mater. doi:10.1002/jbm.b.33371

    Google Scholar 

  23. Bajpai SK, Chand N, Agrawal A (2015) Microwave-assisted synthesis of carboxymethyl psyllium and its development as semi-interpenetrating network with poly(acrylamide) for gastric delivery. J Bioact Compat Polym Biomed Appl. doi:10.1177/0883911515569917

    Google Scholar 

  24. Paulino AT, Guilherme MR, Mattoso HLC, Tambourgi EB (2010) Smart hydrogels based on modified gum arabic as a potential device for magnetic biomaterial. Macromol Chem Phys 211:1196–1205

    Article  CAS  Google Scholar 

  25. Aderibigbe B, Sadiku E, Jayaramudu J, Ray SS (2015) Controlled dual release study of curcumin and a 4-aminoquinoline analog from gum acacia containing hydrogels. J Appl Polym Sci. doi:10.1002/APP.41613

    Google Scholar 

  26. Nishi KK, Antony M, Jayakrishnan A (2007) Synthesis and evaluation of ampicillin-conjugated gum arabic microspheres for sustained release. J Pharm Pharmacol 59:485–493

    Article  CAS  Google Scholar 

  27. Kieczykowski GR, Jobson RB, Melillo DG, Reinhold DF, Grenda VJ, Shinkai I (1995) I. Preparation of (4-amino-1-hydroxybutylidene)bisphosphonic acid sodium salt, MK-217 (alendronate sodium). An improved procedure for the preparation of 1-hydroxy-1,1-bisphosphonic acids. J Org Chem 60:8310–8312

    Article  CAS  Google Scholar 

  28. Kuljanin J, Jankovic I, Nedeljkovic J, Prstojec D, Marinkovic V (2002) Spectrophotometric determination of alendronate in pharmaceutical formulations via complex formation with Fe(III) ions. J Pharm Biomed Anal 28:1215–1220

    Article  CAS  Google Scholar 

  29. Alanne A-L, Hyvönen H, Lahtinen M, Ylisirniö M, Turhanen P, Kolehmainen E, Peräniemi S, Vepsäläinen J (2012) Systematic study of the physicochemical properties of a homologous series of aminobisphosphonates. Molecules 17:10928–10945

    Article  CAS  Google Scholar 

  30. Aderibigbe BA, Sadiku ER, Ray SS, Mbianda XY, Fotsing MC, Agwuncha SC, Owonubi SJ (2015) Synthesis and characterization of polyamidoamine conjugates of neridronic acid. Polym Bull 72:417–439

    Article  CAS  Google Scholar 

  31. Ottenbrite RM, Kinam P, Okano T (2010) Biomedical applications of hydrogel handbook. Springer, New York, pp 4–8

    Book  Google Scholar 

  32. Wu J, Su Z-G, Ma G-H (2006) A thermo- and pH-sensitive hydrogel composed of quaternized chitosan/glycerophosphate. Int J Pharmaceutics 315:1–11

    Article  CAS  Google Scholar 

  33. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN (2010) Silver nanoparticle-loaded PVA/gum acacia hydrogel: synthesis, characterization and antibacterial study. Carbohyr Polym 89:906–913

    Article  Google Scholar 

  34. Reis AV, Guilherme MR, Cavalcanti OS, Rubira AF, Muniz EC (2006) Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 47:2023–2029

    Article  CAS  Google Scholar 

  35. Distantina S, Rochmadi MF (2012) Wiratni, preparation of hydrogel based on glutaraldehyde-crosslinked carrageenan. In: 2012 3rd international conference on chemistry and chemical engineering, IPCBEE, vol 38. IACSIT Press, Singapore

  36. Zhang S, Guan Y, Fu G-Q, Chen B-Y, Peng F, Yao C-L, Sun R-C (2014) Organic/inorganic superabsorbent hydrogels based on xylan and montmorillonite. J Nanomater 2014:675035-1–675035-11

    Google Scholar 

  37. Wang W, Wang Q, Wang A (2011) pH-responsive carboxymethylcellulose-g-poly(sodium acrylate)/polyvinylpyrrolidone semi-IPN hydrogels with enhanced responsive and swelling properties. Macromol Res 19:57–65

    Article  CAS  Google Scholar 

  38. Shi X, Wang W, Kang Y, Wang A (2012) Enhanced swelling properties of a novel sodium alginate-based superabsorbent composites: NaAlg-g-poly(NaA-co-St)/APT. J Appl Polym Sci 125(1822):1832

    Google Scholar 

  39. Shaik MMM, Warole AA, Gokavi GS, Lonikar SV (2014) In vitro release kinetics study of paracetamol from sustained release matrix containing gum acacia and acrylic acid hydrogels. Int J Eng Tech Res 2:298–303

    Google Scholar 

  40. Martinez AW, Caves JM, Ravi S, Li W, Chaikof EL (2014) Effects of crosslinking on the mechanical properties drug release, and cytocompatibility of protein polymers. Acta Biomater 10:26–33

    Article  CAS  Google Scholar 

  41. Wu D-Q, Wu J, Chu C-C (2013) A novel family of biodegradable hybrid hydrogels from arginine-based poly(ester amide) and hyaluronic acid precursors. Soft Matter 9:3965–3975

    Article  CAS  Google Scholar 

  42. Nagpa M, Singh SK, Mishra D (2013) Superporous hybrid hydrogels based on polyacrylamide and chitosan: characterization and in vitro drug release. Int J Pharm Invest 3:88–94

    Article  Google Scholar 

  43. Costa P, Lobo JMS (2001) Modelling and comparison of dissolution profiles. Eur J Pharm Sci 13:123–133

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance of the Medical Research Council and National Research Foundation, South Africa towards this research are hereby acknowledged. The views and opinions expressed in this manuscript are those of the authors and not of MRC or NRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Aderibigbe.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aderibigbe, B.A., Ray, S.S. Gum acacia polysaccharide-based pH sensitive gels for targeted delivery of neridronate. Polym. Bull. 74, 2641–2655 (2017). https://doi.org/10.1007/s00289-016-1857-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1857-2

Keywords

Navigation