Skip to main content

Advertisement

Log in

Mast cells impair the development of protective anti-tumor immunity

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Mast cells have emerged as critical intermediaries in the regulation of peripheral tolerance. Their presence in many precancerous lesions and tumors is associated with a poor prognosis, suggesting mast cells may promote an immunosuppressive tumor microenvironment and impede the development of protective anti-tumor immunity. The studies presented herein investigate how mast cells influence tumor-specific T cell responses. Male MB49 tumor cells, expressing HY antigens, induce anti-tumor IFN-γ+ T cell responses in female mice. However, normal female mice cannot control progressive MB49 tumor growth. In contrast, mast cell-deficient c-KitWsh (Wsh) female mice controlled tumor growth and exhibited enhanced survival. The role of mast cells in curtailing the development of protective immunity was shown by increased mortality in mast cell-reconstituted Wsh mice with tumors. Confirmation of enhanced immunity in female Wsh mice was provided by (1) higher frequency of tumor-specific IFN-γ+ CD8+ T cells in tumor-draining lymph nodes compared with WT females and (2) significantly increased ratios of intratumoral CD4+ and CD8+ T effector cells relative to tumor cells in Wsh mice compared to WT. These studies are the first to reveal that mast cells impair both regional adaptive immune responses and responses within the tumor microenvironment to diminish protective anti-tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Keibel A, Singh V, Sharma MC (2009) Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des 15(17):1949–1955

    Article  PubMed  CAS  Google Scholar 

  2. Coussens LM, Raymond WW, Bergers G et al (1999) Inflammatory cells up-regualate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    Article  PubMed  CAS  Google Scholar 

  3. Gounaris E, Erdman S, Restaino C et al (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 104:19977–19982

    Article  PubMed  CAS  Google Scholar 

  4. Soucek L, Lawlor ER, Soto D, Shchors K, Swigart LB, Evan GI (2007) Mast cells are required for angiogenesis and macroscopic expansion of Myc-induced pancreatic islet tumors. Nat Med 13(10):1211–1218. doi:10.1038/nm1649

    Article  PubMed  CAS  Google Scholar 

  5. Yang FC, Ingram DA, Chen S, Zhu Y, Yuan J, Li X, Yang X, Knowles S, Horn W, Li Y, Zhang S, Yang Y, Vakili ST, Yu M, Burns D, Robertson K, Hutchins G, Parada LF, Clapp DW (2008) Nf1-dependent tumors require a microenvironment containing Nf1 ± and c-kit-dependent bone marrow. Cell 135(3):437–448. doi:10.1016/j.cell.2008.08.041

    Article  PubMed  CAS  Google Scholar 

  6. Dethlefsen SM, Matsuura N, Zetter BR (1994) Mast cell accumulation at sites of murine tumor implantation: implications for angiogenesis and tumor metastasis. Invasion Metastasis 14(1–6):395–408

    PubMed  Google Scholar 

  7. Starkey JR, Crowle PK, Taubenberger S (1988) Mast-cell-deficient W/Wv mice exhibit a decreased rate of tumor angiogenesis. Int J Cancer 42(1):48–52

    Article  PubMed  CAS  Google Scholar 

  8. Blatner NR, Bonertz A, Beckhove P, Cheon EC, Krantz SB, Strouch M, Weitz J, Koch M, Halverson AL, Bentrem DJ, Khazaie K (2010) In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc Natl Acad Sci USA 107(14):6430–6435. doi:10.1073/pnas.0913683107

    Article  PubMed  CAS  Google Scholar 

  9. Huang B, Lei Z, Zhang GM et al (2008) SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood 112(4):1269–1279

    Article  PubMed  CAS  Google Scholar 

  10. Yang Z, Zhang B, Li D, Lv M, Huang C, Shen GX, Huang B (2010) Mast cells mobilize myeloid-derived suppressor cells and Treg cells in tumor microenvironment via IL-17 pathway in murine hepatocarcinoma model. PLoS ONE 5(1):e8922. doi:10.1371/journal.pone.0008922

    Article  PubMed  Google Scholar 

  11. Gulubova M, Vlaykova T (2009) Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J Gastroenterol Hepatol 24(7):1265–1275. doi:10.1111/j.1440-1746.2007.05009.x

    Article  PubMed  Google Scholar 

  12. Johansson A, Rudolfsson S, Hammarsten P, Halin S, Pietras K, Jones J, Stattin P, Egevad L, Granfors T, Wikstrom P, Bergh A (2010) Mast cells are novel independent prognostic markers in prostate cancer and represent a target for therapy. Am J Pathol 177(2):1031–1041. doi:10.2353/ajpath.2010.100070

    Article  PubMed  CAS  Google Scholar 

  13. Ribatti D, Ennas MG, Vacca A, Ferreli F, Nico B, Orru S, Sirigu P (2003) Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur J Clin Invest 33(5):420–425

    Article  PubMed  CAS  Google Scholar 

  14. Yodavudh S, Tangjitgamol S, Puangsa-art S (2008) Prognostic significance of microvessel density and mast cell density for the survival of Thai patients with primary colorectal cancer. J Med Assoc Thai 91(5):723–732

    PubMed  Google Scholar 

  15. Camus M, Tosolini M, Mlecnik B, Pages F, Kirilovsky A, Berger A, Costes A, Bindea G, Charoentong P, Bruneval P, Trajanoski Z, Fridman WH, Galon J (2009) Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res 69(6):2685–2693. doi:10.1158/0008-5472.CAN-08-2654

    Article  PubMed  CAS  Google Scholar 

  16. Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77(7):1303–1310. doi:10.1002/(SICI)1097-0142(19960401)77:7<1303:AID-CNCR12>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  17. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH, Pages F (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. doi:10.1126/science.1129139

    Article  PubMed  CAS  Google Scholar 

  18. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, Rubin SC, Coukos G (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348(3):203–213. doi:10.1056/NEJMoa020177

    Article  PubMed  CAS  Google Scholar 

  19. Galli SJ, Grimbaldeston M, Tsai M (2008) Immunomodulatory mast cells: negative, as well as positive, regulators of immunity. Nat Rev Immunol 8(6):478–486. doi:10.1038/nri2327

    Article  PubMed  CAS  Google Scholar 

  20. Grimbaldeston MA, Chen CC, Piliponsky AM et al (2005) Mast cell-deficient W-sash c-kit mutant KitW-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 167(3):835–848

    Article  PubMed  CAS  Google Scholar 

  21. Wolters PJ, Mallen-St Clair J, Lewis CC, Villalta SA, Baluk P, Erle DJ, Caughey GH (2005) Tissue-selective mast cell reconstitution and differential lung gene expression in mast cell-deficient Kit(W-sh)/Kit(W-sh) sash mice. Clin Exp Allergy 35(1):82–88. doi:10.1111/j.1365-2222.2005.02136.x

    Article  PubMed  CAS  Google Scholar 

  22. Melchionda F, McKirdy MK, Medeiros F, Fry TJ, Mackall CL (2004) Escape from immune surveillance does not result in tolerance to tumor-associated antigens. J Immunother 27(5):329–338

    Article  PubMed  CAS  Google Scholar 

  23. Loskog A, Ninalga C, Hedlund T, Alimohammadi M, Malmstrom PU, Totterman TH (2005) Optimization of the MB49 mouse bladder cancer model for adenoviral gene therapy. Lab Anim 39(4):384–393. doi:10.1258/002367705774286475

    Article  PubMed  CAS  Google Scholar 

  24. Khazaie K, Blatner NR, Khan MW, Gounari F, Gounaris E, Dennis K, Bonertz A, Tsai FN, Strouch MJ, Cheon E, Phillips JD, Beckhove P, Bentrem DJ (2011) The significant role of mast cells in cancer. Cancer Metastasis Rev 30(1):45–60. doi:10.1007/s10555-011-9286-z

    Article  PubMed  CAS  Google Scholar 

  25. Hsu JY, Wakelee HA (2009) Monoclonal antibodies targeting vascular endothelial growth factor: current status and future challenges in cancer therapy. BioDrugs 23(5):289–304. doi:10.2165/11317600-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  26. Patel D, Bassi R, Hooper AT, Sun H, Huber J, Hicklin DJ, Kang X (2008) Enhanced suppression of melanoma tumor growth and metastasis by combined therapy with anti-VEGF receptor and anti-TYRP-1/gp75 monoclonal antibodies. Anticancer Res 28(5A):2679–2686

    PubMed  CAS  Google Scholar 

  27. Ribatti D, Crivellato E (2010) Mast cells, angiogenesis, and tumour growth. Biochim Biophys Acta. doi:10.1016/j.bbadis.2010.11.010

    PubMed  Google Scholar 

  28. Aoki M, Pawankar R, Niimi Y, Kawana S (2003) Mast cells in basal cell carcinoma express VEGF, IL-8 and RANTES. Int Arch Allergy Immunol 130(3):216–223. doi:10.1159/000069515

    Article  PubMed  CAS  Google Scholar 

  29. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan TuG, Prell R, VanRoey MJ, Simmons AD, Jooss K (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory T cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12(22):6808–6816. doi:10.1158/1078-0432.CCR-06-1558

    Article  PubMed  CAS  Google Scholar 

  30. Shrimali RK, Yu Z, Theoret MR, Chinnasamy D, Restifo NP, Rosenberg SA (2010) Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res 70(15):6171–6180. doi:10.1158/0008-5472.CAN-10-0153

    Article  PubMed  CAS  Google Scholar 

  31. Suto H, Nakae S, Kakurai M et al (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112

    PubMed  CAS  Google Scholar 

  32. Sayed BA, Christy A, Quirion MR, Brown MA (2008) The master switch: the role of mast cells in autoimmunity and tolerance. Annu Rev Immunol 26:705–739. doi:10.1146/annurev.immunol.26.021607.090320

    Article  PubMed  CAS  Google Scholar 

  33. Grunig G, Banz A, de Waal Malefyt R (2005) Molecular regulation of Th2 immunity by dendritic cells. Pharmacol Ther 106(1):75–96. doi:10.1016/j.pharmthera.2004.11.004

    Article  PubMed  CAS  Google Scholar 

  34. Reuter S, Heinz A, Sieren M, Wiewrodt R, Gelfand EW, Stassen M, Buhl R, Taube C (2008) Mast cell-derived tumour necrosis factor is essential for allergic airway disease. Eur Respir J 31(4):773–782. doi:10.1183/09031936.00058907

    Article  PubMed  CAS  Google Scholar 

  35. McIlroy A, Caron G, Blanchard S, Fremaux I, Duluc D, Delneste Y, Chevailler A, Jeannin P (2006) Histamine and prostaglandin E up-regulate the production of Th2-attracting chemokines (CCL17 and CCL22) and down-regulate IFN-gamma-induced CXCL10 production by immature human dendritic cells. Immunology 117(4):507–516. doi:10.1111/j.1365-2567.2006.02326.x

    Article  PubMed  CAS  Google Scholar 

  36. Mazzoni A, Siraganian RP, Leifer CA, Segal DM (2006) Dendritic cell modulation by mast cells controls the Th1/Th2 balance in responding T cells. J Immunol 177(6):3577–3581

    PubMed  CAS  Google Scholar 

  37. Theiner G, Gessner A, Lutz MB (2006) The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211(6–8):463–472. doi:10.1016/j.imbio.2006.05.020

    Article  PubMed  CAS  Google Scholar 

  38. Gaudenzio N, Espagnole N, Mars LT, Liblau R, Valitutti S, Espinosa E (2009) Cell-cell cooperation at the T helper cell/mast cell immunological synapse. Blood. doi:10.1182/blood-2009-02-202648

    PubMed  Google Scholar 

  39. Nakae S, Suto H, Iikura M et al (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248

    PubMed  CAS  Google Scholar 

  40. Kambayashi T, Allenspach EJ, Chang JT, Zou T, Shoag JE, Reiner SL, Caton AJ, Koretzky GA (2009) Inducible MHC class II expression by mast cells supports effector and regulatory T cell activation. J Immunol 182(8):4686–4695. doi:10.4049/jimmunol.0803180

    Article  PubMed  CAS  Google Scholar 

  41. Kitawaki T, Kadowaki N, Sugimoto N, Kambe N, Hori T, Miyachi Y, Nakahata T, Uchiyama T (2006) IgE-activated mast cells in combination with pro-inflammatory factors induce Th2-promoting dendritic cells. Int Immunol 18(12):1789–1799. doi:10.1093/intimm/dxl113

    Article  PubMed  CAS  Google Scholar 

  42. Nakae S, Iikura M, Suto H, Akiba H, Umetsu DT, Dekruyff RH, Saito H, Galli SJ (2007) TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood 110(7):2565–2568. doi:10.1182/blood-2006-11-058800

    Article  PubMed  CAS  Google Scholar 

  43. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, Coussens LM (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102. doi:10.1016/j.ccr.2009.06.018

    Article  PubMed  CAS  Google Scholar 

  44. Depinay N, Hacini F, Beghdadi W et al (2006) Mast cell-dependent down-regulation of antigen-specific immune responses by mosquito bites. J Immunol 176:4141–4146

    PubMed  CAS  Google Scholar 

  45. Dalton DK, Noelle RJ (2012) The roles of mast cells in anticancer immunity. Cancer Immunol Immunother. doi:10.1007/S00262-012-1246-0

  46. Benencia F, Courreges MC, Conejo-Garcia JR, Buckanovich RJ, Zhang L, Carroll RH, Morgan MA, Coukos G (2005) Oncolytic HSV exerts direct antiangiogenic activity in ovarian carcinoma. Hum Gene Ther 16(6):765–778. doi:10.1089/hum.2005.16.765

    Article  PubMed  CAS  Google Scholar 

  47. Razin E (1990) Culture of bone marrow-derived mast cells: a model for studying oxidative metabolism of arachidonic acid and synthesis of other molecules derived from membrane phospholipids. Methods Enzymol 187:514–520

    Article  PubMed  CAS  Google Scholar 

  48. Saitoh S, Arudchandran R, Manetz TS, Zhang W, Sommers CL, Love PE, Rivera J, Samelson LE (2000) LAT is essential for Fc(epsilon)RI-mediated mast cell activation. Immunity 12(5):525–535

    Article  PubMed  CAS  Google Scholar 

  49. Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200(6):771–782. doi:10.1084/jem.20041130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants CA123079 and CA123079-03S2 (R. J. N.), and CA124515 (J. R. C.) and HL 083249 (R. V. S).

Conflict of interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph J. Noelle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasiuk, A., Dalton, D.K., Schpero, W.L. et al. Mast cells impair the development of protective anti-tumor immunity. Cancer Immunol Immunother 61, 2273–2282 (2012). https://doi.org/10.1007/s00262-012-1276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1276-7

Keywords

Navigation