Skip to main content
Log in

The impact of electron donors and anode potentials on the anode-respiring bacteria community

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Both anode potentials and substrates can affect the process of biofilm formation in bioelectrochemical systems, but it is unclear who primarily determine the anode-respiring bacteria (ARB) community structure and composition. To address this issue, we divided microbial electrolysis cells (MECs) into groups, feeding them with different substrates and culturing them at various potentials. Non-turnover cyclic voltammetry indicated that the extracellular electron transfer components were uniform when feeding acetate, because the same oxidation peaks occurred at − 0.36 ± 0.01 and − 0.17 ± 0.01 V (vs. Ag/AgCl). Illumina MiSeq sequencing revealed that the dominating ARB was Geobacter, which did not change with different potentials. When the MECs were cultured with sucrose and mixed substrates, oxidation peak P3 (− 0.29 ± 0.015 V) occurred at potentials of − 0.29 and 0.01 V. This may be because of the appearance of Unclassified_AKYG597. In addition, oxidation peak P4 (− 0.99 ± 0.01 V) occurred at high and low potentials (0.61 and − 0.45 V, respectively), and the maximum current densities were far below those of the middle potentials. Illumina MiSeq sequencing showed that fermentation microorganisms (Lactococcus and Sphaerochaeta) dominated the biofilms. Consequently, substrate primarily determined the dominating ARB, and Geobacter invariably dominated the acetate-fed biofilms with potentials changed. Conversely, different potentials mainly affected fermentable substrate-fed biofilms, with dominating ARB turning into Unclassified_AKYG59.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Box JB (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Call D, Logan BE (2008) Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ Sci Technol 42:3401–3406

    Article  CAS  PubMed  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  PubMed  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522

    Article  CAS  PubMed  Google Scholar 

  • Capozzi V, Fiocco D, Amodio ML, Gallone A, Spano G (2009) Bacterial stressors in minimally processed food. Int J Mol Sci 10:3076–3105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  PubMed  Google Scholar 

  • Cheng KY, Ho G, Cordruwisch R (2008) Affinity of microbial fuel cell biofilm for the anodic potential. Environ Sci Technol 42:3828–3834

    Article  CAS  PubMed  Google Scholar 

  • Commault AS, Lear G, Weld RJ (2015) Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater. Bioelectrochemistry 106:150–158

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein DA, Tender LM, Zeikus JG (2006) Effect of electrode potential on electrode-reducing microbiota. Environ Sci Technol 40:6990–6995

    Article  CAS  PubMed  Google Scholar 

  • Freguia S (2009) Lactococcus lactis catalyses electricity generation at microbial fuel cell anodes via excretion of a soluble quinone. Bioelectrochemistry 76:14–18

    Article  CAS  PubMed  Google Scholar 

  • Inoue K, Qian XL, Morgado L, Kim BC, Mester T, Izallalen M, Salgueiro CA, Lovley DR (2010) Purification and characterization of OmcZ, an outer-surface, octaheme c-type cytochrome essential for optimal current production by Geobacter sulfurreducens. Appl Environ Microbiol 76:3999–4007

  • Jung S, Regan JM (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77:393–402

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD, Cusick R, Call DF, Selembo PA, Regan JM, Logan BE (2011) Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresour Technol 102:388–394

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Siggins A, Katuri K, Mahony T, O’Flaherty V, Lens P, Leech D (2013) Catalytic response of microbial biofilms grown under fixed anode potentials depends on electrochemical cell configuration. Chem Eng J 230:532–536

    Article  CAS  Google Scholar 

  • Liu H, Ramnarayanan R, Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ Sci Technol 38:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Hamelers B, Rozendal RA, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  PubMed  Google Scholar 

  • Marsili E, Sun J, Bond DR (2010) Voltammetry and growth physiology of Geobacter sulfurreducens biofilms as a function of growth stage and imposed electrode potential. Electroanalysis 22:865–874

    Article  CAS  Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevin KP, Richter H, Covalla SF, Johnson JP, Woodard TL, Orloff AL (2008) Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens, comparable to mixed community microbial fuel cells. Environ Microbiol 10:2505–2514

    Article  CAS  PubMed  Google Scholar 

  • Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263

    Article  CAS  Google Scholar 

  • Park I, Kim BC (2011) Homologous overexpression of omcZ, a gene for an outer surface c-type cytochrome of Geobacter sulfurreducens by single-step gene replacement. Biotechnol Lett 33:2043–2048

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41:590–596

    Article  Google Scholar 

  • Sousa DZ, Pereira MA, Alves JI, Smidt H, Stams AJ, Alves MS (2008) Anaerobic microbial LCFA degradation in bioreactors. Water Sci Technol 57:439–444

    Article  CAS  PubMed  Google Scholar 

  • Strycharz-Glaven SM, Snider RM, Guiseppi-Elie A, Tender LM (2011) On the electrical conductivity of microbial nanowires and biofilms. Energy Environ Sci 4:4366–4379

    Article  CAS  Google Scholar 

  • Torres CI, Krajmalnik-Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE (2009) Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization. Environ Sci Technol 43:9519–9524

    Article  CAS  PubMed  Google Scholar 

  • Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE (2010) A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 34:3–17

    Article  CAS  PubMed  Google Scholar 

  • Wagner RC, Call DF, Logan BE (2010) Optimal set anode potentials vary in bioelectrochemical systems. Environ Sci Technol 44:6036–6041

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Feng YJ, Ren NQ, Wang HM, Lee H, Li N, Zhao QL (2009) Accelerated start-up of two-chambered microbial fuel cells: effect of anodic positive poised potential. Electrochim Acta 54:1109–1114

    Article  CAS  Google Scholar 

  • Wei JC, Liang P, Cao XX, Huang X (2010) A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint. Environ Sci Technol 44:3187–3191

    Article  CAS  PubMed  Google Scholar 

  • Xing D, Cheng S, Regan JM, Logan BE (2009) Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 25:105–111

    Article  CAS  PubMed  Google Scholar 

  • Yates MD, Kiely PD, Call DF, Risman-Yazdi H, Bibby K, Peccia J, Regan JM, Logan BE (2012) Convergent development of anodic bacterial communities in microbial fuel cells. ISME J 6:2002–2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu XP, Yates MD, Logan BE (2012) Set potential regulation reveals additional oxidation peaks of Geobacter sulfurreducens anodic biofilms. Electrochem Commun 22:116–119

    Article  CAS  Google Scholar 

  • Zhu XP, Yates MD, Hatzell MC, Anand RH, Saikaly PE, Logan BE (2013) Microbial community composition is unaffected by anode potential. Environ Sci Technol 48:1352–1358

    Article  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (grant number 51478431), the Science and Technology Planning Project from the Science and Technology Department in Zhejiang Province (grant number LQ17E080002), the Innovative and Entrepreneurial Training Plan of National College Students (grant number GJ201623003), and the Xinmiao Talent Project in Zhejiang province (grant numbers 2016R408030, 2016R408028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huajun Feng.

Ethics declarations

This paper does not contain studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 1332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, X., Guo, K., Chen, W. et al. The impact of electron donors and anode potentials on the anode-respiring bacteria community. Appl Microbiol Biotechnol 101, 7997–8005 (2017). https://doi.org/10.1007/s00253-017-8518-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8518-8

Keywords

Navigation