Skip to main content
Log in

Chaotic advection induced heat transfer enhancement in a chevron-type plate heat exchanger

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The present work examines the role of chaotic mixing as a means of heat transfer enhancement in plate heat exchangers. In order to demonstrate the chaotic behavior, sensitivity to initial conditions and horseshoe maps are visualized. The Nusselt number and the friction factor were computed in the range of reynolds number, 1 < Re < 10. The Nusselt number increases considerably in chaotic models whereas the friction factor increases only marginally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Ap :

Projected length (m)

As :

Cross section of PHE (m2)

b:

Distance between chevron plates (m)

Bx:

Sugar to water mass ratio in the mixture

Cp :

Specific heat capacity (Jkg−1K−1)

DH :

Hydraulic diameter (m)

d0 :

Distance of two article at time t = 0 (m)

\( \overline{{{\text{d}}_{\text{n}} }} \) :

Mean distance of M tracers (m)

f:

Fanning friction factor

h:

Heat transfer coefficient (Jm−2K−1s−1)

k:

Fluid Thermal conductivity (Jm−1K−1s−1)

kk:

Global iteration number

L:

Effective of chevron plate length (m)

LT:

Total length of chevron plate (m)

Mv :

Volumetric flow rate (kg/s)

Nu:

Nusselt number

pc :

Wave length of chevron plate corrugation (m)

q:

Constant heat flux (W/m2)

Re :

Reynolds number

t:

Time (s)

T:

Temperature (K)

Tb :

Bulk fluid temperature (K)

\( {\text{T}}_{\text{w}} \) :

Mean wall temperature in PHE channel cross section (K)

u:

x component of fluid velocity (m/s)

\( \overline{\text{u}} \) :

Mean velocity in PHE channel (m/s)

V:

Velocity vector of fluid element (m/s)

v:

y component of fluid velocity (m/s)

w:

z component of fluid velocity (m/s)

W:

Chevron plate width (m)

WT:

Total width of chevron plate (m)

x:

x position (m)

x0 :

Initial x position (m)

y:

y position (m)

y0 :

Initial y position (m)

z:

z position (m)

z0 :

Initial z position (m)

β:

Chevron plate angle (º)

γ:

Channel aspect ratio

P :

Pressure loss (Pa)

Δt:

Time step (s)

λ:

Lagrangian Lyapunov exponent

λn :

Localized Lyapunov exponent

\( \overline{{{{\uplambda}}_{\text{n}} }} \) :

Finite time Lyapunov exponent

μ:

Viscosity of apple juice (Pa.s)

\( {{\upmu}}_{\text{w}} \) :

Viscosity of water (Pa.s)

\( {{\uprho}} \) :

Density of fluid (kg/m3)

\( \phi \) :

Area enlargement factor

\( \psi \) :

Degrees of freedom

\( M_{\psi } \) :

Convergence monitor

References

  1. Brennan JG (2006) Food processing handbook. Wiley, KGaA

    Google Scholar 

  2. Fernandes CS, Dias RP, Nobrega JM, Maia JM (2007) Laminar flow in chevron-type plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor. Chem Eng Process 46:825–833

    Article  Google Scholar 

  3. Kakaç S, Liu H (2002) Heat exchangers: selection, rating and thermal design. CRC Press, UK

    Book  Google Scholar 

  4. Durmus A, Benli H, Kurtbas I, Gül H (2009) Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles. Int J Heat Mass Transf 52:1451–1457

    Article  Google Scholar 

  5. Gut JAW, Pinto JM (2007) Optimal configuration design for plate heat exchangers. Int J Heat Mass Transf 47:4833–4848

    Article  Google Scholar 

  6. Wang L, Sunden B (2003) Optimal design of plate heat exchangers with and without pressure drop specifications. Appl Therm Eng 23:295–311

    Article  Google Scholar 

  7. Kanaris AG, Mouza AA, Paras SV (2009) Optimal design of a plate heat exchanger with undulated surfaces. Int J Therm Sci 48:1184–1195

    Article  Google Scholar 

  8. Chagny C, Castelain C, Peerhossaini H (2000) Chaotic heat transfer for heat exchanger design and comparison with a regular regime for a large range of Reynolds numbers. Appl Therm Eng 20:1615–1648

    Article  Google Scholar 

  9. Metcalfe G, Lester D (2009) Mixing and heat transfer of highly viscous food products with a continuous chaotic duct flow. J Food Eng 95:21–29

    Article  Google Scholar 

  10. Acharya N, SEN M (1991) Heat transfer enhancement in coiled tubes by chaotic mixing. Int J Heat Mass Transf 35(10):2475–2489

    Article  Google Scholar 

  11. Jones SW, Thomas OM, Aref H (1989) Chaotic advection by laminar flow in twisted pipe. J Fluid Mech 209:335–357

    Article  MathSciNet  Google Scholar 

  12. Acharya N, Sen M, Cheng HC (1992) Heat transfer enhancement in coiled tubes by chaotic mixing. Int J Heat Mass Transf 35:2475–2489

    Article  Google Scholar 

  13. Peerhossaini H, Le Guer Y (1991) Chaotic motion in the Dean instability flow-a heat exchanger design. Bull Am Phys Soc 35:2229

    Google Scholar 

  14. Mokrani A, Castelain C, Le Guer Y, Peerhossaini H (1998) Mesure du compartment chaotique des trajectories produites dans un ecoulementde Dean alterneen regimelaminaire. Rev Gen Therm 37:459–474

    Article  Google Scholar 

  15. Mokrani A, Castelain C, Peerhossaini H (1997) The effects of chaotic advection on heat transfer. Int J Heat Mass Transf 40:3089–3104

    Article  Google Scholar 

  16. Acharya N, Sen M, Chang HC (1992) Applications of chaotic heat and mass transfer enhancement. AIChE Symp Ser 286:44–49

    Google Scholar 

  17. Yamagishi A, Inaba T, Yamaguchi Y (2007) Chaotic analysis of mixing enhancement in steady laminar flows through multiple pipe bends. Int J Heat Mass Transf 50:1238–1247

    Article  Google Scholar 

  18. Kumar V, Nigam KDP (2005) Numerical simulation of steady flow fields in coiled flow inverter. Int J Heat Mass Transf 48:4811–4828

    Article  Google Scholar 

  19. Kumar V, Mridha M, Gupta AK, Nigam KDP (2007) Coiled flow inverter as a heat exchanger. Chem Eng Sci 62:2386–2396

    Article  Google Scholar 

  20. Mridha M, Nigam KDP (2008) Coiled flow inverter as an inline mixer. Chem Eng Sci 63:1724–1732

    Article  Google Scholar 

  21. Kumar V, Nigam KDP (2007) Laminar convective heat transfer in chaotic configuration. Int J Heat Mass Transf 50:2469–2479

    Article  Google Scholar 

  22. Castelain C, Peerhossaini H (2006) A chaotic heat exchanger for PEMFC cooling applications. J Power Sour 156(1):114–118

    Article  Google Scholar 

  23. Fernandes CS, Dias RP, N′obrega IM, Afonso JM, Melo LF, Maia JM (2005) Simulation of stirred yoghurt processing in plate heat exchangers. J Food Eng 69:281–290

    Article  Google Scholar 

  24. Costenla DT, Lozano JE, Crapiste GH (1989) Thermophysical properties of clarified apple juice as a function of concentration and temperature. J Food Sci 54(3):663–668

    Article  Google Scholar 

  25. Martin H (1996) A theoretical approach to predict the performance of chevron type plate heat exchangers. Chem Eng Process 35:301–310

    Article  Google Scholar 

  26. Afonso IM, Cruz P, Maia JM, Melo LF (2008) Simplified numerical simulation to obtain heat transfer correlations for stirred yoghurt in a plate heat exchanger. Food Bioprod Process 86:296–303

    Article  Google Scholar 

  27. Ding J, Manglik RM (1996) Analytical solutions for laminar fully developed flows in double-sine shaped ducts. Heat Mass Transf 31:269–277

    Article  Google Scholar 

  28. Wanniarachchi AS, Ratnam U, Tilton BE, Dutta-Roy K (1995) Approximate correlations for chevron-type plate heat exchangers. In: Proceedings ASME HTD, 314, National heat transfer conference, 12:145–151

  29. Kumar H. (1984) The plate heat exchanger: construction and design. Proceedings first UK national conference on heat transfer, University of Leeds, Inst Chem Symp 86:1275–1288

  30. Ottino JM (1989) The kinematics of mixing: stretching, chaos and transport. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Hosseinalipour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohidi, A., Hosseinalipour, S.M., Taheri, P. et al. Chaotic advection induced heat transfer enhancement in a chevron-type plate heat exchanger. Heat Mass Transfer 49, 1535–1548 (2013). https://doi.org/10.1007/s00231-013-1180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-013-1180-5

Keywords

Navigation