Skip to main content
Log in

Helical force with a two-phase Cattaneo LTNE model on hyper-chaotic convection in the presence of magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

An extensive and precise computational evaluation of Cattaneo local thermal nonequilibrium (LTNE) impacts through the chaotic convective dynamical behavior in a two-phase porous medium with a helical force of magnetic field has been accomplished by using the double-Fourier mode techniques. Meanwhile embracing the Darcy–Brinkman model for base fluid flow and the Cattaneo heat flux law-derived hyperbolic-type heat transport equation in solid is being assessed. The energy equations are derived using the LTNE, which establishes different temperature profiles for both the fluid and solid phases. As a result of the Cattaneo LTNE effect, the system also exhibits exceptional topological properties, with regular patches enclosed within chaotic domains. The recently proposed perspective is in favor of the discovery of an analytical description for the critical Darcy–Rayleigh numbers that signify the commencement of steady and oscillate convection, respectively. The novel perspective of chaotic convection provides the most comprehensive explanation for the transition from Cattaneo heat flow, magnetic field, helical force, thermal relaxation parameter, and Darcy effect. The flow features of behavior in response to the stimulating individual and combination factors are investigated visually in great depth. At its most acute, the combination of heat flux conductivity and interphase thermal transfer destabilizes the system, whereas the magnetic field, helical force, Darcy effect, and thermal relaxation parameter coefficient have the opposite effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript. This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request.]

Abbreviations

c :

Specific heat at constant pressure

\({\tilde{\textrm{D}}}\textrm{a}\) :

Modified Darcy number

\({\tilde{g}}\) :

Gravitational acceleration

\(\phi \) :

Interphase heat flow

K :

Permeability

\(k_{\textrm{f}}\) :

Fluid thermal conductivity

\(k_{\textrm{s}}\) :

Solid thermal conductivity

Pr\(_{\textrm{D}}\) :

Darcy–Prandtl number

R\(_D\) :

Rayleigh number

\(\vec {v}\) :

Velocity vector

\({\tilde{T}}\) :

Temperature

\(\alpha \) :

Thermal diffusivity of the fluid in (\(\textrm{m}^{2}\,\textrm{s}^{-1}\))

\(\alpha _{\textrm{t}}\) :

Coefficient of thermal expansion in (K\(^{-1}\))

\(\mu _f\) :

Dynamic viscosity in (Kg m\(^{-1}\,\textrm{s}^{-1}\))

\(\epsilon \) :

Porosity of the medium

\({\tilde{\rho }}\) :

Density in (\(\mathrm{Kg\,m}^{-3}\))

\({\tilde{\rho }}_{\textrm{f}}\) :

Fluid density

\({\tilde{\rho }}_{\textrm{s}}\) :

Solid density

\({\tilde{\mu }}_f\) :

Effective viscosity

\(\chi _{\textrm{s}}\) :

Solid thermal relaxation time

\({\tilde{\chi }}\) :

Nondimensional solid thermal relaxation parameter

\('\) :

Dimensionless

c:

Critical

f:

Base fluid

s:

Solid

References

  1. D. Nield, C.T. Simmons, Transp. Porous Media 130, 237250 (2019)

    Article  Google Scholar 

  2. J. Feder, E.G. Flekkoy, A. Hansen, Cambridge University Press, (2022)

  3. Y. Mahmoudi, K. Hooman, K. Vafai, CRC Press, (2019)

  4. M. Parhizi, M. Torabi, A. Jain, Int. J. Heat Mass Transf. 164, 120538 (2021)

    Article  Google Scholar 

  5. J. Cox, S. Belding, T. Lowder, Appl. Energy 310, 118499 (2022)

    Article  Google Scholar 

  6. Z. Guo, X. Tian, Z. Wu, J. Yang, Q. Wang, Energy Convers. Manag. 257, 115435 (2022)

    Article  Google Scholar 

  7. H. Wu, Y. Han, Z. Geng, J. Fan, W. Xu, Sustain. Energy Technol. Assess. 49, 101734 (2022)

    Google Scholar 

  8. N. Karnik, U. Bora, K. Bhadri, P. Kadambi, P. Dhatrak, J. Ind. Inf. Integr. 27, 100294 (2022)

    Google Scholar 

  9. J.Y. Baek, B.H. Park, G.C. Rau, K.K. Lee, J. Hydrol. 608, 127589 (2022)

    Article  Google Scholar 

  10. M. Quintard, M. Kaviany, S. Whitaker, Adv. Water Resour. 20, 7794 (1997)

    Article  Google Scholar 

  11. N. Banu, D. Rees, Int. J. Heat Mass Transf. 45(11), 222128 (2002)

    Article  Google Scholar 

  12. A. Barletta, D.A.S. Rees, Int. J. Heat Mass Transf. 55, 384394 (2012)

    Google Scholar 

  13. P. Bera, S. Pippal, A.K. Sharma, Int. J. Heat Mass Transf. 78, 108094 (2014)

    Article  Google Scholar 

  14. A. Kuznetsov, D. Nield, A. Barletta, M. Celli, Transp. Porous Media 109, 393409 (2015)

    Article  Google Scholar 

  15. C. Siddabasappa, T. Sakshath, Physica A 566, 125617 (2021)

    Article  Google Scholar 

  16. S. Pati, A. Borah, M.P. Boruah, P.R. Randive, Int. Commun. Heat Mass Transf. 132, 105889 (2022)

    Article  Google Scholar 

  17. B. Prasannakumara, Indian J. Phys. 96, 247583 (2022)

    Article  Google Scholar 

  18. P. Li, F. Yue, K. Wang, H. Zhang, H. Huang, X. Kong, Int. J. Heat Mass Transf. 195, 123195 (2022)

    Article  Google Scholar 

  19. T. Tayebi, A.J. Chamkha, H.F. Oztop, L. Bouzeroura, Math. Comput. Simul. 194, 124140 (2022)

    Article  Google Scholar 

  20. C.H. Kumar, B. Shankar, I. Shivakumara, J. Heat Transf. 144, 072701 (2022)

    Article  Google Scholar 

  21. C. Hemanth Kumar, B. Shankar, I. Shivakumara, J. Heat Transf. 144, 042602 (2022)

    Article  Google Scholar 

  22. B. Jalili, A. Rezaeian, P. Jalili, F. Ommi, D.D. Ganji, Case Stud. Therm. Eng. 45, 102944 (2023)

    Article  Google Scholar 

  23. Z.I. Butt, I. Ahmad, M. Shoaib, H. Ilyas, M.A.Z. Raja, Int. Commun. Heat Mass Transf. 140, 106516 (2023)

    Article  Google Scholar 

  24. A. Srivastava, B. Bhadauria, J. Appl. Fluid Mech. 9, 28452853 (2016)

    Google Scholar 

  25. M. Izadi, M.A. Sheremet, S. Mehryan, Chin. J. Phys. 65, 447458 (2020)

    Google Scholar 

  26. C. Siddabasappa, G. Kalpana, Babitha, Heat Transf. 52, 949967 (2023)

  27. A.I. Zhmakin, Tech. Phys. 66, 122 (2021)

    Article  Google Scholar 

  28. J.C. Maxwell, Philos. Trans. R. Soc. Lond. 157, 4988 (1867)

    Google Scholar 

  29. C. Cattaneo, Compt. Rendu. 247, 431433 (1958)

    Google Scholar 

  30. M. Carrassi, A. Il, Nuovo Cimento B 13, 281299 (1973)

    Article  Google Scholar 

  31. S. Lurie, P. Belov, Contin. Mech. Thermodyn. 32, 709728 (2020)

    Article  Google Scholar 

  32. F. Capone, J.A. Gianfrani, Int. J. Non-linear Mech. 139, 103889 (2022)

    Article  ADS  Google Scholar 

  33. A.R. Al Hajri, M.M. Rahman, I.A. Eltayeb, Int. J. Thermofluids 17, 100254 (2023)

    Article  Google Scholar 

  34. I. A. Eltayeb, J. Porous Media 26 (2023)

  35. M. Steenbeck, F. Krause, K.-H. Radler, Zeitschrift fur Naturforschung A 21, 369376 (1966)

    Google Scholar 

  36. P. Hounsou, A. Monwanou, C. Miwadinou, J. Chabi Orou, Indian J. Phys. 94, 158190 (2020)

    Article  Google Scholar 

  37. M. Kpossa, A. Monwanou, In. J. Appl. Mech. Eng. 27, 158176 (2022)

    Google Scholar 

  38. M. Hounvenou, A. Monwanou, Int. J. Appl. Comput. Math. 9, 15 (2023)

    Article  Google Scholar 

  39. G. Chen, X. Yu, Springer, vol. 292 (2003)

  40. S.H. Strogatz, CRC Press, (2018)

  41. E.N. Lorenz, J. Atmos. Sci. 20, 130141 (1963)

    Google Scholar 

  42. C. Sparrow, Springer, vol. 41 (2012)

  43. P. Vadasz, S. Olek, Transp. Porous Media 37, 6991 (1999)

    Google Scholar 

  44. Z. Rana, M. Aqeel, J. Ayub, M. Shaukat, Chin. J. Phys. 58, 166178 (2019)

    Article  Google Scholar 

  45. S. Giwa, M. Sharifpur, M. Ahmadi, J. Meyer, J. Therm. Anal. Calorim. 145, 2581 (2021)

    Article  Google Scholar 

  46. M. Sheikholeslami, M. Rashidi, T. Hayat, D. Ganji, J. Mol. Liq. 218, 393399 (2016)

    Article  Google Scholar 

  47. I. Shivakumara, M. Ravisha, C.-O. Ng, V. Varun, Int. J. Non-linear Mech. 71, 3947 (2015)

    Article  Google Scholar 

  48. I. Shivakumara, M. Ravisha, C.-O. Ng, V. Varun, Acta Mech. 226, 376379 (2015)

    Article  Google Scholar 

  49. A.V. Monwanou, A.L. Hinvi, H.C. Miwadinou, J.B.C. Orou, J. Appl. Math. Phys. 5, 150314 (2017)

    Article  Google Scholar 

  50. J. Garandet, T. Alboussiere, R. Moreau, Int. J. Heat Mass Transf. 35, 741748 (1992)

    Article  Google Scholar 

  51. B. Straughan, Proc. R. Soc. A Math. Phys. Eng. Sci. 469, 20130187 (2013)

    ADS  Google Scholar 

  52. A. Postelnicu, D. Rees, Int. J. Energy Res. 27, 961973 (2003)

    Article  Google Scholar 

  53. P. Barnoon, D. Toghraie, M. Salarnia, A. Karimipour, J. Therm. Anal. Calorim. 146, 187226 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Muthtamilselvan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surendar, R., Muthtamilselvan, M. Helical force with a two-phase Cattaneo LTNE model on hyper-chaotic convection in the presence of magnetic field. Eur. Phys. J. Plus 138, 658 (2023). https://doi.org/10.1140/epjp/s13360-023-04297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04297-3

Navigation