Skip to main content
Log in

Dynamic vapour sorption of wood and holocellulose modified with thermosetting resins

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Micro-veneers of wood and holocellulose (HC) were modified with the thermosetting resins phenol formaldehyde and melamine formaldehyde. The dynamic water vapour sorption of the modified and untreated veneers was studied in a dynamic vapour sorption apparatus to assess the effects of resin modification. The adsorption of wood and HC as well as the desorption of wood was little affected by the modification in the low relative humidity (RH) range but decreased in the RH range above 60–70 %. The desorption isotherm of HC, however, was increased in the RH range of 15–80 % due to modification. Resin modification gradually decreased the EMC ratio of wood and HC and also influenced the moisture increment, equilibrium time and sorption rate in RH range above 50–60 % RH for wood and above 70–80 % RH for HC. HC exhibited a clearly lower hysteresis than wood. Modification of wood slightly reduced hysteresis compared to untreated wood, but modification of HC clearly increased hysteresis about to the same extent as that of wood. This indicates that the stiffening effect of lignin and thermosetting resins reduces the flexibility of the HC matrix, which results in increased hysteresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamopoulos S, Hosseinpourpia R, Mai C (2015) Tensile strength of handsheets prepared with macerated fibres from solid wood modified with cross-linking agents. Holzforschung. doi:10.1515/hf-2014-0216

    Google Scholar 

  • Akitsu H, Norimoto M, Morooka T, Rowell RM (1993) Effect of humidity on vibrational properties of chemically-modified wood. Wood Fiber Sci 25:250–260

    CAS  Google Scholar 

  • Berthold J, Desbrières J, Rinaudo M, Salmén L (1994) Types of adsorbed water in relation to the ionic groups and their counter-ions for some cellulose derivatives. Polymer 35(26):5729–5736

    Article  CAS  Google Scholar 

  • Borrega M, Kärenlampi PP (2010) Hygroscopicity of heat-treated. Norway spruce (Picea abies) wood. Eur J Wood Prod 68:233–235

    Article  CAS  Google Scholar 

  • Browning BL (1967) Methods of wood chemistry, vol 2. Interscience Publishers, New York

    Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chang HT, Chang ST (2002) Moisture excluding efficiency and dimensional stability of wood improved by acetylation. Bioresour Technol 85:201–204

    Article  PubMed  CAS  Google Scholar 

  • Christensen GN (1965) The rate of sorption of water vapor by thin materials. In: Winn PN (ed) Humidity and moisture. Volume four: principles and methods of measuring moisture in liquids and solids. Reinhold Publishing Corporation, New York, pp 279–293

    Google Scholar 

  • Dent RW (1977) A multilayer theory for gas sorption. Part I: sorption of a single gas. Text Res J 47:145–152

    CAS  Google Scholar 

  • Dieste A, Krause A, Mai C, Militz H (2010) The calculation of EMC for the analysis of wood/water relations in Fagus sylvatica L. modified with 1,3-dimethylol-4,5-dihydroxyethyleneurea. Wood Sci Technol 44:597–606

    Article  CAS  Google Scholar 

  • Engelund E, Thygesen L, Svensson S, Hill CAS (2013) A critical discussion of the physics of wood–water interactions. Wood Sci Technol 47:141–161

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood. Chemistry, ultrastructure, reactions. Verlag Walter de Gruyter, Berlin

    Google Scholar 

  • Hailwood AJ, Horrobin S (1947) Absorption of water by polymers: analysis in terms of a simple model. J Chem Soc Faraday Trans 42B:84–102

    Google Scholar 

  • Hartley ID (2000) Application of the Guggenheim–Anderson–deBoer sorption isotherm model to klinki pine (Araucaria klinkii Lauterb.). Holzforschung 54:661–663

    Article  CAS  Google Scholar 

  • Hill CAS (2006) Wood modification—chemical thermal and other processes. Wiley, Chichester

    Book  Google Scholar 

  • Hill CAS (2008) The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62:423–428

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2009) The water vapor sorption behavior of natural fibers. J Appl Polym Sci 112:1524–1537

    Article  CAS  Google Scholar 

  • Hill CAS, Norton A, Newman G (2010) The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus. Wood Sci Technol 44:497–514

    Article  CAS  Google Scholar 

  • Himmel S, Mai C (2015) Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood. Holzforschung 69(5):633–643

    Article  CAS  Google Scholar 

  • Hofstetter K, Hinterstoisser B, Salmén L (2006) Moisture uptake in native cellulose—the roles of different hydrogen bonds: a dynamic FT-IR study using Deuterium exchange. Cellulose 13:131–145

    Article  CAS  Google Scholar 

  • Hosseinpourpia R, Adamopoulos S, Mai C (2015) Tensile strength of handsheets from recovered fibers treated with N-methylol melamine and 1,3-dimethylol-4,5-dihydroxyethyleneurea. J Appl Polym. doi:10.1002/app.41290

    Google Scholar 

  • Kato KL, Cameron RE (1999) A review of the relationship between thermally-accelerated ageing of paper and hornification. Cellulose 6:23–40

    Article  CAS  Google Scholar 

  • Kielmann BC, Adamopoulos S, Militz H, Mai C (2013) Strength changes in ash, beech and maple wood modified with a n-methylol melamine compound and a metal complex dye. Wood Res Slov 58(3):343–350

    CAS  Google Scholar 

  • Kielmann BC, Adamopoulos S, Militz H, Koch G, Mai C (2014) Modification of three hardwoods with an N-methylol melamine compound and a metal-complex dye. Wood Sci Technol 48:123–136

    Article  CAS  Google Scholar 

  • Klüppel A, Mai C (2012) Effect of lignin and hemicelluloses on the tensile strength of micro-veneers determined at finite span and zero span. Holzforschung 66:493–496

    Article  Google Scholar 

  • Klüppel A, Mai C (2013) The influence of curing conditions on the chemical distribution in wood modified with thermosetting resins. Wood Sci Technol 47:643–658

    Article  Google Scholar 

  • Krabbenhoft K, Damkilde L (2004) A model for non-Fickian moisture transfer in wood. Mater Struct 37:615–622

    Article  CAS  Google Scholar 

  • Labuza TP (1984) Moisture sorption: practical aspects of isotherm measurement and use. American Association of Cereal Chemists, St. Paul

    Google Scholar 

  • Lu Y, Pignatello JJ (2002) Demonstration of the ‘conditioning effect’ in soil organic matter in support of a pore deformation mechanism for sorption hysteresis. Environ Sci Technol 36:4553–4561

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Pignatello JJ (2004) History-dependent sorption in humic acids and a lignite in the context of a polymer model for natural organic matter. Environ Sci Technol 38:5853–5862

    Article  PubMed  CAS  Google Scholar 

  • Lukowsky D (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz Roh- Werkst 60:349–355

    Article  CAS  Google Scholar 

  • Mahnert KC, Adamopoulos S, Koch G, Militz H (2013) Topochemistry of heat-treated and N-methylol melamine-modified wood of koto (Pterygota macrocarpa K. Schum.) and limba (Terminalia superba Engl. et. Diels). Holzforschung 67(2):137–146

    Article  CAS  Google Scholar 

  • Malmquist L, Söderström O (1996) Sorption equilibrium in relation to the spatial distribution of molecules—application to sorption of water by wood. Holzforschung 50:437–448

    Article  CAS  Google Scholar 

  • Merakeb S, Dubois F, Petit C (2006) Modeling of the sorption hysteresis for wood. Wood Sci Technol 43:575–589

    Article  Google Scholar 

  • Neimark AV, Ravikovitch PI, Vishnyakov A (2000) Multiplicity of internal states in confined fluids. Phys Rev Relat Interdiscip Top 62:493–1496

    Google Scholar 

  • Nelson RM Jr (1983) A model for sorption of water vapor by cellulosic materials. Wood Fiber Sci 15(1):8–22

    CAS  Google Scholar 

  • Norimoto M, Grill J (1993) Structure and properties of chemically treated woods. In: Shiraishi N, Kajita H, Norimoto M (eds) Recent research on wood and wood based materials, current materials research, vol 11. Elsevier Applied Science, London, pp 135–154

    Chapter  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4:173–207

    Article  Google Scholar 

  • Olsson AM, Salmén L (2004) The softening behavior of hemicelluloses related to moisture. ACS Symp Ser 864:184–197

    Article  CAS  Google Scholar 

  • Popescu CM, Hill CAS, Curling S, Ormondroyd G, Xie Y (2014) The water vapour sorption behaviour of acetylated birch wood: how acetylation affects the sorption isotherm and accessible hydroxcyl content. J Mater Sci 49:2362–2371

    Article  CAS  Google Scholar 

  • Rowell RM (2005) Moisture properties. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Google Scholar 

  • Rowell RM, Pettersen R, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton

    Google Scholar 

  • Ryu JY, Imamura Y, Takahashi M, Kajita H (1993) Effects of molecular weight and some other properties of resins on the biological resistance of phenolic resin treated wood. Mokuzai Gakkaishi 39(4):486–492

    CAS  Google Scholar 

  • Sander M, Yuefeng Lu, Pignatello IJ (2005) A thermodynamically based method to quantify true sorption hysteresis. J Environ Qual 34:1063–1107

    Article  PubMed  CAS  Google Scholar 

  • Siau JF (1995) Wood: influence of moisture on physical properties. Department of Wood Science and Forest Products, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

  • Skaar C (1988) Wood–water relations. Springer, Berlin

    Book  Google Scholar 

  • Stamm AJ (1959) Dimensional stabilisation of wood catalysed by heat treatment and crosslinking with formaldehyde. Tappi 42:44–50

    CAS  Google Scholar 

  • Stamm AJ (1964) Wood and cellulose science. The Ronald Press Company, New York

    Google Scholar 

  • Stamm AJ, Baechler RH (1960) Decay resistance and dimensional stability of five modified woods. For Prod J 10:22–26

    CAS  Google Scholar 

  • Suchy M, Virtanen J, Kontturi E, Vuorinen T (2010) Impact of drying on wood ultrastructure observed by deuterium exchange and photoacoustic FT-IR spectroscopy. Biomacromolecules 11:515–520

    Article  PubMed  CAS  Google Scholar 

  • Urquhart AR (1959) Sorption of water on cellulose and starch. In: Honeyman J (ed) Recent advances in the chemistry of cellulose and starch. Heywood and Company, LTD, London, pp 311–341

    Google Scholar 

  • Van Den Berg C (1984) Description of water activity of foods for engineering purposes by means of the GAB model of sorption. In: McKenna BM (ed) Engineering and Food, vol. 1, Elsevier, London, UK, pp 311–321

  • Vrentas JS, Vrentas CM (1991) Sorption in glassy polymers. Macromolecules 24:2404–2412

    Article  CAS  Google Scholar 

  • Xiao Z, Xie Y, Militz H, Mai C (2010) Effect of glutaraldehyde on water related properties of solid wood. Holzforschung 64:483–488

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Jalaludin Z, Militz H, Mai C (2010) Water vapor sorption kinetics of wood modified with glutaraldehyde. J Appl Polym Sci 117:1674–1682

    CAS  Google Scholar 

  • Xie Y, Hill CAS, Xiao Z, Mai C, Militz H (2011) Dynamic water vapour sorption properties of wood treated with glutaraldehyde. Wood Sci Technol 45:49–61

    Article  CAS  Google Scholar 

  • Yasuda R, Minato K, Norimoto M (1994) Chemical modification of wood by nonformaldehyde cross-linking reagents. Part 2. Moisture adsorption and creep properties. Wood Sci Technol 28:209–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Academic Exchange Service (DAAD) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpourpia, R., Adamopoulos, S. & Mai, C. Dynamic vapour sorption of wood and holocellulose modified with thermosetting resins. Wood Sci Technol 50, 165–178 (2016). https://doi.org/10.1007/s00226-015-0765-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0765-1

Keywords

Navigation