Skip to main content
Log in

Properties of hydrogen bonds in the protic ionic liquid ethylammonium nitrate

DFT versus DFTB molecular dynamics

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Comparative molecular dynamics simulations of a hexamer cluster of the protic ionic liquid ethylammonium nitrate are performed using density functional theory and density functional-based tight-binding (DFTB) methods. The focus is on assessing the performance of the DFTB approach to describe the dynamics and infrared spectroscopic signatures of hydrogen bonding between the ions. Average geometries and geometric correlations are found to be rather similar. The same holds true for the far-infrared spectral region. Differences are more pronounced for the NH- and CH-stretching bands, where DFTB predicts a broader intensity distribution. DFTB completely fails to describe the fingerprint range shaped by nitrate anion vibrations. Finally, charge fluctuations within the H bonds are characterized yielding moderate dependencies on geometry. On the basis of these results, DFTB is recommended for the simulation of H bond properties of this type of ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Firaha DS, Hollóczki O, Kirchner B (2015) Angew Chem Int Ed 54:7805

    Article  CAS  Google Scholar 

  2. Kerlé D, Ludwig R, Geiger A, Paschek D (2009) J Phys Chem B 113:12727

    Article  Google Scholar 

  3. Welton T (1999) Chem Rev 99:2071

    Article  CAS  Google Scholar 

  4. Zhang Y, Maginn EJ (2015) J Phys Chem Lett 6:700

    Article  CAS  Google Scholar 

  5. Hunt PA, Ashworth CR, Matthews RP (2015) Chem Soc Rev 44:1257

    Article  CAS  Google Scholar 

  6. Fumino K, Wulf A, Ludwig R (2008) Angew Chem Int Ed 47:8731

    Article  CAS  Google Scholar 

  7. Fumino K, Reichert E, Wittler K, Hempelmann R, Ludwig R (2012) Angew Chem Int Ed 51:6236

    Article  CAS  Google Scholar 

  8. Roth C, Chatzipapadopoulos S, Kerlé D, Friedriszik F, Lütgens M, Lochbrunner S, Kühn O, Ludwig R (2012) New J Phys 14:105026

    Article  Google Scholar 

  9. Nibbering ET, Dreyer J, Kühn O, Bredenbeck J, Hamm P, Elsaesser T (2007) In: Kühn O, Wöste L (eds) Analysis and control of ultrafast photoinduced reactions. Springer, Heidelberg, p 619

    Chapter  Google Scholar 

  10. Zhuang W, Hayashi T, Mukamel S (2009) Angew Chem Int Ed 48:3750

    Article  CAS  Google Scholar 

  11. Chatzipapadopoulos S, Zentel T, Ludwig R, Lütgens M, Lochbrunner S, Kühn O (2015) ChemPhysChem 16:2519

    Article  CAS  Google Scholar 

  12. Johnson CJ, Fournier JA, Wolke CT, Johnson MA (2013) J Chem Phys 139:224305

    Article  Google Scholar 

  13. Bodo E, Sferrazza A, Caminiti R, Mangialardo S, Postorino P (2013) J Chem Phys 139:144309

    Article  CAS  Google Scholar 

  14. Giese K, Petković M, Naundorf H, Kühn O (2006) Phys Rep 430:211

    Article  CAS  Google Scholar 

  15. Mathias G, Baer MD (2011) J Chem Theory Comput 7:2028

    Article  CAS  Google Scholar 

  16. Thomas M, Brehm M, Hollóczki O, Kelemen Z, Nyulászi L, Pasinszki T, Kirchner B (2014) J Chem Phys 141:024510

    Article  Google Scholar 

  17. May V, Kühn O (2011) Charge and energy transfer dynamics in molecular systems, 3rd revised and enlarged edition. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Ivanov SD, Witt A, Marx D (2013) Phys Chem Chem Phys 15:10270

    Article  CAS  Google Scholar 

  19. Maginn EJ (2009) J Phys Condens Matt 21:373101

    Article  CAS  Google Scholar 

  20. Del Pópolo MG, Voth GA (2004) J Phys Chem B 108:1744

    Article  Google Scholar 

  21. Bernardes CES, Shimizu K, Lobo Ferreira AIMC, Santos LMNBF, Canongia Lopes JN (2014) J Phys Chem B 118:6885

    Article  CAS  Google Scholar 

  22. Shimizu K, Bernardes CES, Canongia JN (2014) J Phys Chem B 118:567

    Article  CAS  Google Scholar 

  23. Zentel T, Kühn O (2016) J Chem Phys 145:234504

    Article  Google Scholar 

  24. Marx D, Hutter J (2010) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge

    Google Scholar 

  25. Kirchner B, Hollóczki O, Canongia Lopes JN, Pádua AAH (2015) WIREs Comput Mol Sci 5:202

    Article  CAS  Google Scholar 

  26. Zahn S, Thar J, Kirchner B (2010) J Chem Phys 132:124506

    Article  Google Scholar 

  27. Schröder C (2011) J Chem Phys 135:024502

    Article  Google Scholar 

  28. Wendler K, Brehm M, Malberg F, Kirchner B, Delle L (2012) J Chem Theory Comput 8:1570

    Article  CAS  Google Scholar 

  29. Thomas M, Brehm M, Kirchner B (2015) Phys Chem Chem Phys 17:3207

    Article  CAS  Google Scholar 

  30. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260

    Article  CAS  Google Scholar 

  31. Yang Y, Yu H, York D, Cui Q, Elstner M (2007) J Phys Chem A 111:10861

    Article  CAS  Google Scholar 

  32. Elstner M (2006) Theor Chem Acc 116:316

    Article  CAS  Google Scholar 

  33. Welke K, Watanabe HC, Wolter T, Gaus M, Elstner M (2013) Phys Chem Chem Phys 15:6651

    Article  CAS  Google Scholar 

  34. Addicoat MA, Stefanovic R, Webber GB, Atkin R, Page AJ (2014) J Chem Theory Comput 10:4633

    Article  CAS  Google Scholar 

  35. Bodo E, Mangialardo S, Ramondo F, Ceccacci F, Postorino P (2012) J Phys Chem B 116:13878

    Article  CAS  Google Scholar 

  36. Song X, Hamano H, Minofar B, Kanzaki R, Fujii K, Kameda Y, Kohara S, Watanabe M, Ishiguro Si, Umebayashi Y (2012) J Phys Chem B 116:2801

    Article  CAS  Google Scholar 

  37. Fumino K, Wulf A, Ludwig R (2009) Angew Chem Int Ed 48:3184

    Article  CAS  Google Scholar 

  38. Zentel T, Kühn O (2016) J Mol Liq 226:56

    Article  Google Scholar 

  39. Humphrey W, Dalke A, Schulten K (1996) J Mol Graph 14:33

    Article  CAS  Google Scholar 

  40. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  41. Gottwald F (2012) Bachlor thesis. University of Rostock

  42. Ufimtsev I, Martinez T (2009) J Chem Theory Comput 5:2619

    Article  CAS  Google Scholar 

  43. Gaus M, Cui Q, Elstner M (2011) J Chem Theory Comput 7:931

    Article  CAS  Google Scholar 

  44. Gaus M, Goez A, Elstner M (2013) J Chem Theory Comput 9:338

    Article  CAS  Google Scholar 

  45. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149

    Article  CAS  Google Scholar 

  46. Aradi B, Hourahine B, Frauenheim T (2007) J Phys Chem A 111:5678

    Article  CAS  Google Scholar 

  47. Brehm M, Weber H, Pensado AS, Stark A, Kirchner B (2012) Phys Chem Chem Phys 14:5030

    Article  CAS  Google Scholar 

  48. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  49. TURBOMOLE V6.5 (1989–2007) A development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, TURBOMOLE GmbH, since 2007. http://www.turbomole.com

  50. Deglmann P, May K, Furche F, Ahlrichs R (2004) Chem Phys Lett 384:103

    Article  CAS  Google Scholar 

  51. Häser M, Ahlrichs R (1989) J Comput Chem 10:104

    Article  Google Scholar 

  52. Hätting C, Weigend F (2000) J Chem Phys 113:5154

    Article  Google Scholar 

  53. Hayes R, Imberti S, Warr GG, Atkin R (2011) Phys Chem Chem Phys 13:3237

    Article  CAS  Google Scholar 

  54. Limbach HH, Denisov GS, Golubev NS (2006) In: Kohen A, Limbach HH (eds) Isotope effects in chemistry and biology. CRC Press, Boca Raton, p 193

    Google Scholar 

  55. Pauling L (1947) J Am Chem Soc 69:542

    Article  CAS  Google Scholar 

  56. Limbach HH, Pietrzak M, Sharif S, Tolstoy PM, Shenderovich IG, Smirnov SN, Golubev NS, Denisov GS (2004) Chem Eur J 10:5195

    Article  CAS  Google Scholar 

  57. Steiner T (1998) J Phys Chem A 102:7041

    Article  CAS  Google Scholar 

  58. Munkres J (1957) J Soc Ind Appl Math 5:32

    Article  Google Scholar 

  59. Otte N, Scholten M, Thiel W (2007) J Phys Chem A 111:5751

    Article  CAS  Google Scholar 

  60. Umebayashi Y, Chung WL, Mitsugi T, Fukuda S, Takeuchi M, Fujii K, Takamuku T, Kanzaki R, Ishiguro Si (2008) J Comput Chem Jpn 7:125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for financial support through the SFB 652 and A. Wulf for supplying the experimental FIR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Kühn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 290 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zentel, T., Kühn, O. Properties of hydrogen bonds in the protic ionic liquid ethylammonium nitrate. Theor Chem Acc 136, 87 (2017). https://doi.org/10.1007/s00214-017-2119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-017-2119-6

Keywords

Navigation