Skip to main content
Log in

Theoretical study on excited-state intermolecular proton transfer reactions of 1H-pyrrolo[3,2-h]quinoline with water and methanol

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The dynamics of the ultrafast excited-state multiple intermolecular proton transfer (PT) reactions in gas-phase complexes of 1H-pyrrolo[3,2-h]quinoline with water and methanol (PQ(H2O) n and PQ(MeOH) n , where n = 1, 2) is modeled using quantum-chemical simulations. The minimum energy ground-state structures of the complexes are determined. Molecular dynamics simulations in the first excited state are employed to determine reaction mechanisms and the time evolution of the PT processes. Excited-state dynamics results for all complexes reveal synchronous excited-state multiple proton transfer via solvent-assisted mechanisms along an intermolecular hydrogen-bonded network. In particular, excited-state double proton transfer is the most effective, occurring with the highest probability in the PQ(MeOH) cluster. The PT character of the reactions is suggested by nonexistence of crossings between ππ* and πσ* states.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arnaut LG, Formosinho SJ (1993) J Photochem Photobiol, A 75:1–20

    Article  CAS  Google Scholar 

  2. Formosinho SJ, Arnaut LG (1993) J Photochem Photobiol, A 75:21–48

    Article  CAS  Google Scholar 

  3. Han K-L, Zhao G-J (eds) (2010) Hydrogen bonding and transfer in the excited state Volume I & II. Wiley, Chichester

    Google Scholar 

  4. Zhao G-J, Han K-L (2012) Acc Chem Res 45:404–413

    Article  CAS  Google Scholar 

  5. Gordon MS (1996) J Phys Chem 100:3974–3979

    Article  CAS  Google Scholar 

  6. Mente S, Maroncelli M (1998) J Phys Chem A 102:3860–3876

    Article  CAS  Google Scholar 

  7. Waluk J (2003) Acc Chem Res 36:832–838

    Article  CAS  Google Scholar 

  8. Reyman D, Diaz-Oliva C (2011) Excited-state double hydrogen bonding induced by charge transfer in isomeric bifunctional azaaromatic compounds. Wiley, Chichester, pp 661–709

    Google Scholar 

  9. Daengngern R, Kungwan N, Wolschann P, Aquino AJA, Lischka H, Barbatti M (2011) J Phys Chem A 115:14129–14136

    Article  CAS  Google Scholar 

  10. Sakota K, Jouvet C, Dedonder C, Fujii M, Sekiya H (2010) J Phys Chem A 114:11161–11166

    Article  CAS  Google Scholar 

  11. Filarowski A, Koll A, Hansen PE, Kluba M (2008) J Phys Chem A 112:3478–3485

    Article  CAS  Google Scholar 

  12. Filarowski A, Majerz I (2008) J Phys Chem A 112:3119–3126

    Article  CAS  Google Scholar 

  13. Jezierska-Mazzarello A, Vuilleumier R, Panek JJ, Ciccotti G (2010) J Phys Chem B 114:242–253

    Article  CAS  Google Scholar 

  14. Kungwan N, Plasser F, Aquino AJA, Barbatti M, Wolschann P, Lischka H (2012) Phys Chem Chem Phys 14:9016–9025

    Article  CAS  Google Scholar 

  15. Hara A, Sakota K, Nakagaki M, Sekiya H (2005) Chem Phys Lett 407:30–34

    Article  CAS  Google Scholar 

  16. Sakota K, Komoto Y, Nakagaki M, Ishikawa W, Sekiya H (2007) Chem Phys Lett 435:1–4

    Article  CAS  Google Scholar 

  17. Sakota K, Inoue N, Komoto Y, Sekiya H (2007) J Phys Chem A 111:4596–4603

    Article  CAS  Google Scholar 

  18. Taylor CA, El-Bayoumi MA, Kasha M (1969) Proc Natl Acad Sci USA 63:253–260

    Article  CAS  Google Scholar 

  19. Ilich P (1995) J Mol Struct 354:37–47

    Article  CAS  Google Scholar 

  20. Kina D, Nakayama A, Noro T, Taketsugu T, Gordon MS (2008) J Phys Chem A 112:9675–9683

    Article  CAS  Google Scholar 

  21. Fernández-Ramos A, Martínez-Núñez E, Vázquez SA, Ríos MA, Estévez CM, Merchán M, Serrano-Andrés L (2007) J Phys Chem A 111:5907–5912

    Article  Google Scholar 

  22. Guglielmi M, Tavernelli I, Rothlisberger U (2009) Phys Chem Chem Phys 11:4549–4555

    Article  CAS  Google Scholar 

  23. Park SY, Jang DJ (2009) J Am Chem Soc 132:297–302

    Article  Google Scholar 

  24. Kyrychenko A, Waluk J (2006) J Phys Chem A 110:11958–11967

    Article  CAS  Google Scholar 

  25. Nosenko Y, Kunitski M, Thummel RP, Kyrychenko A, Herbich J, Waluk J, Riehn C, Brutschy B (2006) J Am Chem Soc 128:10000–10001

    Article  CAS  Google Scholar 

  26. Nosenko Y, Kyrychenko A, Thummel RP, Waluk J, Brutschy B, Herbich J (2007) Phys Chem Chem Phys 9:3276–3285

    Article  CAS  Google Scholar 

  27. Nosenko Y, Kunitski M, Riehn C, Thummel RP, Kyrychenko A, Herbich J, Waluk J, Brutschy B (2008) J Phys Chem A 112:1150–1156

    Article  CAS  Google Scholar 

  28. Gorski A, Gawinkowski S, Herbich J, Krauss O, Brutschy B, Thummel RP, Waluk J (2012) J Phys Chem A 116:11973–11986

    Article  CAS  Google Scholar 

  29. Wiosna G, Petkova I, Mudadu MS, Thummel RP, Waluk J (2004) Chem Phys Lett 400:379–383

    Article  CAS  Google Scholar 

  30. Kyrychenko A, Herbich J, Izydorzak M, Wu F, Thummel RP, Waluk J (1999) J Am Chem Soc 121:11179–11188

    Article  CAS  Google Scholar 

  31. Kyrychenko A, Herbich J, Wu F, Thummel RP, Waluk J (2000) J Am Chem Soc 122:2818–2827

    Article  CAS  Google Scholar 

  32. Ferlin MG, Chiarelotto G, Baccichetti F, Carlassare F, Toniolo L, Bordin F (1992) Farmaco 47:1513–1528

    CAS  Google Scholar 

  33. Herbich J, Dobkowski J, Thummel RP, Hegde V, Waluk J (1997) J Phys Chem A 101:5839–5845

    Article  CAS  Google Scholar 

  34. Kyrychenko A, Stepanenko Y, Waluk J (2000) J Phys Chem A 104:9542–9555

    Article  CAS  Google Scholar 

  35. Weigend F, Häser M (1997) Theor Chem Acc 97:331–340

    Article  CAS  Google Scholar 

  36. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143–152

    Article  CAS  Google Scholar 

  37. Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577

    Article  Google Scholar 

  38. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  39. Hättig C (2003) J Chem Phys 118:7751–7761

    Article  Google Scholar 

  40. Hättig C (2005) Adv Quantum Chem 50:37–60

    Article  Google Scholar 

  41. Winter NOC, Graf NK, Leutwyler S, Hattig C (2013) Phys Chem Chem Phys 15:6623–6630

    Article  CAS  Google Scholar 

  42. Barbatti M, Aquino AJA, Lischka H (2010) Phys Chem Chem Phys 12:4959–4967

    Article  CAS  Google Scholar 

  43. Barbatti M, Granucci G, Ruckenbauer M, Plasser F, Pittner J, Persico M, Lischka H (2011) Newton-X: a package for Newtonian dynamics close to the crossing seam, version 1.2. www.newtonx.org

  44. Barbatti M, Granucci G, Persico M, Ruckenbauer M, Vazdar M, Eckert-Maksic M, Lischka H (2007) J Photochem Photobiol, A 190:228–240

    Article  CAS  Google Scholar 

  45. Swope WC, Andersen HC, Berens PH, Wilson KR (1982) J Chem Phys 76:637–649

    Article  CAS  Google Scholar 

  46. Barbatti M, Aquino AJA, Lischka H, Schriever C, Lochbrunner S, Riedle E (2009) Phys Chem Chem Phys 11:1406–1415

    Article  CAS  Google Scholar 

  47. Zhu C, Lin SH (2006) J Chem Phys 125:044104 1–044104 6

  48. Dewar MJS (1984) J Am Chem Soc 106:209–219

    Article  CAS  Google Scholar 

  49. Al-Lawatia N, Husband J, Steinbrecher T, Abou-Zied OK (2011) J Phys Chem A 115:4195–4201

    Article  CAS  Google Scholar 

  50. Tanner C, Manca C, Leutwyler S (2003) Science. Washington, DC, US, 302:1736–1739

  51. Barbatti M, Aquino AJA, Lischka H, Schriever C, Lochbrunner S, Riedle E (2009) Phys Chem Chem Phys 11:1406–1415

    Article  CAS  Google Scholar 

  52. Daengngern R, Kerdpol K, Kungwan N, Hannongbua S, Barbatti M (2013) J Photochem Photobiol, A 266:28–36

    Article  CAS  Google Scholar 

  53. Lawrenz M, Baron R, McCammon JA (2009) J Chem Theory Comput 5:1106–1116

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank the Thailand Research Fund (TRF) (MRG5480294 and RTA5380010) for financial support. The computer facility at the Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawee Kungwan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2013_1397_MOESM1_ESM.docx

Cartesian coordinates of ground-state optimized structures. Potential energy diagrams for selected trajectories. Time evolution of geometrical and energetic variables. (DOCX 1006 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kungwan, N., Daengngern, R., Piansawan, T. et al. Theoretical study on excited-state intermolecular proton transfer reactions of 1H-pyrrolo[3,2-h]quinoline with water and methanol. Theor Chem Acc 132, 1397 (2013). https://doi.org/10.1007/s00214-013-1397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1397-x

Keywords

Navigation