Skip to main content
Log in

Theoretical insights into photoinduced proton transfer of 7-hydroxyquinoline via intermolecular hydrogen-bonded wire of mixed methanol and water

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Proton transfer (PT) reactions of 7-hydroxyquinoline (7HQ) via intermolecular hydrogen-bonded wire of methanol, water and mixed methanol–water in ground (S0) and first excited (S1) states, [7HQ(X)3 when X = M-methanol and W-water], have been studied by using density functional theory (DFT) at B3LYP and its time-dependent DFT with 6-31+G(d,p) basis set. For all complexes, the intermolecular hydrogen bonds become shorter and the O–H stretching vibrational frequencies shift to lower frequencies in the S1 state, which confirm that the hydrogen bonding interaction is stronger in the S1 state. Moreover, the frontier molecular orbitals of all complexes were analyzed to confirm the PT reactions (ππ*). The simulated absorption and emission spectra of 7HQ(MMM) are in good agreement with the experimental data. In addition, the potential energy curves along the PT reaction coordinates of all complexes both in S0 and S1 states were scanned by constrained optimizations fixing the O–H bond distance (a proton donor site of 7HQ) to investigate the effect of different intermolecular hydrogen-bonded solvent wires surrounding 7HQ. PT reactions are found to be favorable in S1 state due to the low PT energy barrier. For pure solvent, the excited-stated proton transfer (ESPT) occurs faster via methanol than water. For mixed solvent, when replacing methanol with one up to three water molecules, PT energy barrier is found to be higher than that of 7HQ(MMM); therefore, water may block the ESPT reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watson JD, Crick FHC (1953) Nature 171:737–738

    Article  CAS  Google Scholar 

  2. Arnaut LG, Formosinho SJ (1993) J Photochem Photobiol A Chem 75:1–20

    Article  CAS  Google Scholar 

  3. Formosinho SJ, Arnaut LG (1993) J Photochem Photobiol A Chem 75:21–48

    Article  CAS  Google Scholar 

  4. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M (2001) Science 291:2121–2124

    Article  CAS  Google Scholar 

  5. Tanner C, Manca C, Leutwyler S (2003) Science 302:1736–1739

    Article  CAS  Google Scholar 

  6. Tanner C, Thut M, Steinlin A, Manca C, Leutwyler S (2006) J Phys Chem A 110:1758–1766

    Article  CAS  Google Scholar 

  7. Thut M, Tanner C, Steinlin A, Leutwyler S (2008) J Phys Chem A 112:5566–5572

    Article  CAS  Google Scholar 

  8. Mason SF, Philp J, Smith BE (1968). J Chem Soc A 3051–3056

  9. Itoh M, Adachi T, Tokumura K (1983) J Am Chem Soc 105:4828–4829

    Article  CAS  Google Scholar 

  10. Thistlethwaite PJ (1983) Chem Phys Lett 96:509–512

    Article  CAS  Google Scholar 

  11. Itoh M, Adachi T, Tokumura K (1984) J Am Chem Soc 106:850–855

    Article  CAS  Google Scholar 

  12. Thistlethwaite PJ, Corkill PJ (1982) Chem Phys Lett 85:317–321

    Article  CAS  Google Scholar 

  13. Nakagawa T, Kohtani S, Itoh M (1995) J Am Chem Soc 117:7952–7957

    Article  CAS  Google Scholar 

  14. Kohtani S, Tagami A, Nakagaki R (2000) Chem Phys Lett 316:88–93

    Article  CAS  Google Scholar 

  15. Park S-Y, Kim H-B, Yoo BK, Jang D-J (2012) J Phys Chem B 116:14153–14158

    Article  CAS  Google Scholar 

  16. Matsumoto Y, Ebata T, Mikami N (2001) Chem Phys Lett 338:52–60

    Article  CAS  Google Scholar 

  17. Matsumoto Y, Ebata T, Mikami N (2002) J Phys Chem A 106:5591–5599

    Article  CAS  Google Scholar 

  18. Al-Lawatia N, Husband J, Steinbrecher T, Abou-Zied OK (2011) J Phys Chem A 115:4195–4201

    Article  CAS  Google Scholar 

  19. Bekcioglu G, Allolio C, Ekimova M, Nibbering ETJ, Sebastiani D (2014) Phys Chem Chem Phys 16:13047–13051

    Article  CAS  Google Scholar 

  20. Cui Y, Zhao H, Zhao J, Li P, Song P, Xia L (2015) New J Chem 39:9910–9917

    Article  CAS  Google Scholar 

  21. Konijnenberg J, Ekelmans GB, Huizer AH, Varma CAGO (1989) J Chem Soc Faraday Trans 2(85):39–51

    Article  Google Scholar 

  22. Kim T-G, Lee S-I, Jang D-J, Kim Y (1995) J Phys Chem 99:12698–12700

    Article  CAS  Google Scholar 

  23. Lee S-I, Jang D-J (1995) J Phys Chem 99:7537–7541

    Article  CAS  Google Scholar 

  24. Fang W-H (1998) J Am Chem Soc 120:7568–7576

    Article  CAS  Google Scholar 

  25. Park S-Y, Kim B, Lee Y-S, Kwon O-H, Jang D-J (2009) Photochem Photobiol Sci 8:1611–1617

    Article  CAS  Google Scholar 

  26. Park S-Y, Lee Y-S, Kwon O-H, Jang D-J (2009). Chem Commun 926–928

  27. Lim H, Park S-Y, Jang D-J (2010) J Phys Chem A 114:11432–11435

    Article  CAS  Google Scholar 

  28. Park S-Y, Jang D-J (2010) J Am Chem Soc 132:297–302

    Article  CAS  Google Scholar 

  29. Kang B, Ko KC, Park S-Y, Jang D-J, Lee JY (2011) Phys Chem Chem Phys 13:6332–6339

    Article  CAS  Google Scholar 

  30. Kwon O-H, Lee Y-S, Yoo BK, Jang D-J (2006) Angew Chem Int Ed 45:415–419

    Article  CAS  Google Scholar 

  31. Fradelos G, Kaminski JW, Wesolowski TA, Leutwyler S (2009) J Phys Chem A 113:9766–9771

    Article  CAS  Google Scholar 

  32. Bach A, Leutwyler S (1999) Chem Phys Lett 299:381–388

    Article  CAS  Google Scholar 

  33. Kang B, Jang D-J, Lee JY (2015) Chem Phys 456:8–12

    Article  CAS  Google Scholar 

  34. Daengngern R, Kerdpol K, Kungwan N, Hannongbua S, Barbatti M (2013) J Photochem Photobiol A Chem 266:28–36

    Article  CAS  Google Scholar 

  35. Kerdpol K, Daengngern R, Kungwan N (2015) Mol Simul 41:1177–1186

    Article  CAS  Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  37. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  38. Corni S, Cammi R, Mennucci B, Tomasi J (2005) J Chem Phys 123:134512

    Article  CAS  Google Scholar 

  39. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Assfeld X, Ciofini I, Adamo C (2006) J Chem Phys 125:164324

    Article  Google Scholar 

  40. Jacquemin D, Mennucci B, Adamo C (2011) Phys Chem Chem Phys 13:16987–16998

    Article  CAS  Google Scholar 

  41. Grabowski SJ (2004) J Phys Org Chem 17:18–31

    Article  CAS  Google Scholar 

  42. Ganguly A, Paul BK, Ghosh S, Guchhait N (2013) Comput Theor Chem 1018:102–114

    Article  CAS  Google Scholar 

  43. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian Inc, Wallingford, CT

    Google Scholar 

  44. Zhao G-J, Han K-L (2012) Acc Chem Res 45:404–413

    Article  CAS  Google Scholar 

  45. Zhao G-J, Han K-L (2008) J Comput Chem 29:2010–2017

    Article  CAS  Google Scholar 

  46. Zhao G-J, Han K-L (2010) In: Han K-L, Zhao G-J (eds) Hydrogen bonding and transfer in the excited state. Wiley, Chichester, pp 149–158

    Chapter  Google Scholar 

  47. Savarese M, Netti PA, Rega N, Adamo C, Ciofini I (2014) Phys Chem Chem Phys 16:8661–8666

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Thailand Research Fund (RSA5880057) for financial support. K. Kerdpol thanks the Science Achievement Scholarship of Thailand (SAST), Faculty of Science, Chiang Mai University, Chiang Mai, Thailand. Moreover, the Graduate School, Chiang Mai University and National Nanotechnology Center (NANOTEC) of Thailand are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Supawadee Namuangruk or Nawee Kungwan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerdpol, K., Daengngern, R., Meeprasert, J. et al. Theoretical insights into photoinduced proton transfer of 7-hydroxyquinoline via intermolecular hydrogen-bonded wire of mixed methanol and water. Theor Chem Acc 135, 208 (2016). https://doi.org/10.1007/s00214-016-1963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1963-0

Keywords

Navigation