Skip to main content
Log in

The Oseen–Frank Limit of Onsager’s Molecular Theory for Liquid Crystals

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the relationship between Onsager’s molecular theory, which involves the effects of nonlocal molecular interactions and the Oseen–Frank theory for nematic liquid crystals. Under the molecular setting, we prove the existence of global minimizers for the generalized Onsager’s free energy, subject to a nonlocal boundary condition which prescribes the second moment of the number density function near the boundary. Moreover, when the re-scaled interaction distance tends to zero, the global minimizers will converge to a uniaxial distribution predicted by a minimizing harmonic map. This is achieved through the investigations of the compactness property and the boundary behaviors of the corresponding second moments. A similar result is established for critical points of the free energy that fulfill a natural energy bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000

  2. Alberti G., Bellettini G.: A nonlocal anisotropic model for phase transitions: asymptotic behavior of rescaled energies. Euro. J. Appl. Math. 9, 261–284 (1998)

    Article  MATH  Google Scholar 

  3. Ball J.M., Majumdar A.: Nematic liquid crystals: From Maier-Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  4. Ball J.M., Zarnescu A.: Orientability and energy minimization in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauman P., Park J., Phillips D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Canevari G.: Biaxiality in the asymptotic analysis of a 2D Landau–de Gennes model for liquid crystals. ESAIM Control Optim. Calc. 21(1), 101–137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals. International Series of Monographs on Physics, 2nd edn. Oxford University Press, Incorporated, 1995

  8. Doi, M., Edwards, S. F.: The Theory of Polymer Dynamics, vol. 73. Oxford University Press, Oxford, 1988

  9. E W., Zhang P.: A molecular kinetic theory of inhomogeneous liquid crystal flow and the small Deborah number limit. Methods Appl. Anal. 13(2), 181–198 (2006)

    MathSciNet  MATH  Google Scholar 

  10. Ericksen J.L.: Hydrostatic theory of liquid crystals. Arch. Ration. Mech. Anal. 9, 371–378 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Ericksen J.L.: Equilibrium theory of liquid crystals. Adv. Liq. Cryst. 2, 233–298 (1976)

    Article  Google Scholar 

  12. Fatkullin I., Slastikov V.: Critical points of the Onsager functional on a sphere. Nonlinearity 18(6), 2565–2580 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Feng J., Chaubal C., Leal L.: Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid–crystalline polymers? J. Rheol. 42(5), 1095–1119 (1998)

    Article  ADS  Google Scholar 

  14. Golovaty D., Montero J.A.: On minimizers of a Landau–de Gennes energy functional on planar domains. Arch. Ration. Mech. Anal. 213(2), 447–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Golse, F., Saint-Raymond, L.: Hydrodynamic limits for the Boltzmann equation. Riv. Mat. Univ. Parma (7) 4**, 1–144, 2005

  16. Han J., Luo Y., Wang W., Zhang P., Zhang Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215(3), 741–809 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hardt R., Kinderlehrer D., Lin F.-H.: Existence and partial regularity of static liquid crystal configurations. Comm. Math. Phys. 105(4), 547–570 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kuzuu N., Doi M.: Constitutive equation for nematic liquid crystals under weak velocity gradient derived from a molecular kinetic equation. J. Phys. Soc. Japan 52(10), 3486–3494 (1983)

    Article  ADS  Google Scholar 

  19. Landau, L., Lifshitz, E.: Statistical Physics. Course of Theoretical Physics 5, 1958

  20. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28(4), 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, F., Wang, C.: The Analysis of Harmonic Maps and Their Heat Flows. World Scientific Publishing Co. Pte. Ltd., Hackensack (2008)

  22. Lin, F., Wang, C.: Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372(2029), 20130361, 18, 2014

  23. Liu H., Zhang H., Zhang P.: Axial symmetry and classification of stationary solutions of Doi-Onsager equation on the sphere with Maier-Saupe potential. Commun. Math. Sci. 3(2), 201–218 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maier W., Saupe A.: Eine einfache molekulare theorie des nematischen kristallinflüssigen zustandes. Zeitschrift für Naturforschung A 13(7), 564–566 (1958)

    ADS  Google Scholar 

  25. Majumdar A., Zarnescu A.: Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond. Arch. Ration. Mech. Anal. 196(1), 227–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Onsager L.: The effects of shape on the interaction of colloidal particles. Ann. NY. Acad. Sci. 51(4), 627–659 (1949)

    Article  ADS  Google Scholar 

  27. Somoza A., Tarazona P.: Frank elastic constants of a nematic liquid crystal of hard molecules. Phys. Rev. A 40(10), 6069 (1989)

    Article  ADS  Google Scholar 

  28. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, 1970

  29. Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton Lectures in Analysis, II. Princeton University Press, Princeton, 2003

  30. Wang Q., E W., Liu C., Zhang P.: Kinetic theory for flows of nonhomogeneous rodlike liquid crystalline polymers with a nonlocal intermolecular potential. Phys. Rev. E 65(5), 051504 (2002)

    Article  ADS  Google Scholar 

  31. Wang M., Wang W., Zhang Z.: From the Q-tensor flow for the liquid crystal to the harmonic map flow. Arch. Ration. Mech. Anal. 225(2), 663–683 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang W., Zhang P., Zhang Z.: The small Deborah number limit of the Doi–Onsager equation to the Ericksen–Leslie equation. Commun. Pure Appl. Math. 68(8), 1326–1398 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yu H., Zhang P.: A kinetic–hydrodynamic simulation of microstructure of liquid crystal polymers in plane shear flow. J. Non-Newton. Fluid Mech. 141(2), 116–127 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, W. The Oseen–Frank Limit of Onsager’s Molecular Theory for Liquid Crystals. Arch Rational Mech Anal 227, 1061–1090 (2018). https://doi.org/10.1007/s00205-017-1180-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-017-1180-6

Navigation