Skip to main content
Log in

Effect of external longitudinal magnetic field on arc plasma characteristics and droplet transfer during laser-MIG hybrid welding

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The arc plasma behavior and droplet transfer are investigated using laser-MIG (metal insert gas) hybrid welding assisted by an external longitudinal magnetic field. The characteristic of arc plasma and droplet transfer can be recorded via combining sensing of the welding current and arc voltage with a high-speed imaging. Results indicated that the external longitudinal magnetic field had a significant impact on the arc shape, droplet formation, droplet size, and detaching. Under the magnetic field, the arc shape became a triangle gradually, and the off-axis arc and droplet gradually pointed to the axis of the filler wire. In addition, it has been found that with increasing the magnetic induction intensity, the droplet diameter and cycle time can be reduced. The mechanism of these phenomena was also further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steen WM (1980) Arc augmented laser processing of materials. J Appl Phys 51(13):5636–5641

    Article  Google Scholar 

  2. Li ZY, Srivatsan TS, Li Y, Zhang WZ (2013) Coupling of laser with plasma arc to facilitate hybrid welding of metallic materials: a review. J Mater Eng Perform 22(2):384–395. doi:10.1007/s11665-012-0280-6

    Article  Google Scholar 

  3. Zhang W, Hua XM, Liao W, Li F, Wang M (2014a) Behavior of the plasma characteristic and droplet transfer in CO2 laser-GMAW-P hybrid welding. Int J Adv Manuf Technol 72(5–8):935–942. doi:10.1007/s00170-014-5731-9

    Article  Google Scholar 

  4. Wang J, Wang C, Meng X, Hu X, Yu Y, Yu S (2011) Interaction between laser-induced plasma/vapor and arc plasma during fiber laser-MIG hybrid welding. J Mech Sci Technol 25(6):1529–1533. doi:10.1007/s12206-011-0410-3

    Article  Google Scholar 

  5. Gao M, Zeng X, Hu QW (2007) Effects of gas shielding parameters on weld penetration of CO2 laser-TIG hybrid welding. J Mater Process Technol 184(1–3):177–183. doi:10.1016/j.jmatprotec.2006.11.019

    Google Scholar 

  6. Stute U, Kling R, Hermsdorf J (2007) Interaction between electrical arc and Nd: YAG laser-MIG hybrid welding. CIRP Ann 56(1):197–200

    Article  Google Scholar 

  7. Campana G, Fortunato A, Ascari A, Tani G, Tomesani L (2007) The influence of arc transfer mode in hybrid laser-mig welding. J Mater Process Technol 191(1–3):111–113. doi:10.1016/j.jmatprotec.2007.03.001

    Article  Google Scholar 

  8. Tani G, Campana G, Fortunato A, Ascari A (2007) The influence of shielding gas in hybrid LASER-MIG welding. Appl Surf Sci 253(19):8050–8053. doi:10.1016/j.apsusc.2007.02.144

    Article  Google Scholar 

  9. Liu SY, Liu FD, Xu CY, Zhang H (2013) Experimental investigation on arc characteristic and droplet transfer in CO2 laser-metal arc gas (MAG) hybrid welding. Int J Heat Mass Transf 62:604–611. doi:10.1016/j.ijheatmasstransfer.2013.03.051

    Article  Google Scholar 

  10. Zhang W, Hua XM, Liao W, Li F, Wang M (2014b) Study of metal transfer in CO2 laser+GMAW-P hybrid welding using argon-helium mixtures. Opt Laser Technol 56:158–166. doi:10.1016/j.optlastec.2013.08.006

    Article  Google Scholar 

  11. Liu SY, Zhang H, Shi Y, Liu FD (2012a) Arc characteristic and behaviour of droplet transfer in CO2 laser-MAG hybrid welding of high strength steel. Laser Eng 23(1–2):29–42

    Google Scholar 

  12. Gao Z, Jiang P, Wang C, Shao X, Pang S, Zhou Q, Li X, Wang Y (2017) Study on droplet transfer and weld quality in laser-MIG hybrid welding of 316L stainless steel. Int J Adv Manuf Technol 88(1–4):483–493. doi:10.1007/s00170-016-8774-2

    Article  Google Scholar 

  13. Le Guen E, Fabbro R, Carin M, Coste F, Le Masson P (2011) Analysis of hybrid Nd:Yag laser-MAG arc welding processes. Opt Laser Technol 43(7):1155–1166. doi:10.1016/j.optlastec.2011.03.002

    Article  MATH  Google Scholar 

  14. Blinkov VA, Sheninkin MZ, Abralv MA (1975) Grains of solidifying metal refined under vibrations. Autom Weld 28(11):11–12

    Google Scholar 

  15. Luo J, Jia CS, Wang YS, Xue J, Wu YX (2001) Mechanism of the gas tungsten-arc welding in longitudinal magnetic field controlling. I. Property of the arc. Acta Metall Sin 37(2):212–216

    Google Scholar 

  16. Zhu S, Wang Q, Yin F, Liang Y, Wang X, Li X (2011) Research on MIG welding arc under alternating longitudinal magnetic field. Transactions of Materials and Heat Treatment 32(11):23–27

    Google Scholar 

  17. Chang YL, Liu MX, Lu L, Babkin AS, Lee BY (2015) The influence of longitudinal magnetic field on the CO2 arc shape. Plasma Sci Technol 17(4):321–326. doi:10.1088/1009-0630/17/4/11

    Article  Google Scholar 

  18. Liu Y, Sun Q, Liu J, Wang S, Feng J (2015) Effect of axial external magnetic field on cold metal transfer welds of aluminum alloy and stainless steel. Mater Lett 152:29–31. doi:10.1016/j.matlet.2015.03.077

    Article  Google Scholar 

  19. Luo J, Yao Z, Xue K (2016) Anti-gravity gradient unique arc behavior in the longitudinal electric magnetic field hybrid tungsten inert gas arc welding. Int J Adv Manuf Technol 84(1–4):647–661. doi:10.1007/s00170-015-7728-4

    Google Scholar 

  20. Hartz-Behrend K, Marqués JL, Forster G, Jenicek A, Müller M, Cramer H, Jilg A, Soyer H, Schein J (2014) Stud arc welding in a magnetic field—investigation of the influences on the arc motion. J Phys Conf Ser 550:012003. doi:10.1088/1742-6596/550/1/012003

    Article  Google Scholar 

  21. Chang YL, Liu XL, Lu L, Babkin AS, Lee BY, Gao F (2014) Impacts of external longitudinal magnetic field on arc plasma and droplet during short-circuit GMAW. Int J Adv Manuf Technol 70(9–12):1543–1553. doi:10.1007/s00170-013-5403-1

    Article  Google Scholar 

  22. Zhou J, Tsai H (2007) Application of Electromagnetic Force in Laser Welding. In: ASME 2007 International Mechanical Engineering Congress and Exposition, 2007. American Society of Mechanical Engineers, pp 1025–1030

  23. Liu J, Hu W, Liu Y, Liu Y (2000) Analysis of the effect on electron density along the laser path by adding magnetic field in laser beam welding. In: Optics and Optoelectronic Inspection and Control: Techniques, Applications, and Instruments, 2000. International Society for Optics and Photonics, pp 236–239

  24. Vollertsen F, Thomy C (2006) Magnetic stirring during laser welding of aluminum. J Laser Appl 18(1):28–34

    Article  Google Scholar 

  25. Gatzen M, Tang Z, Vollertsen F, Mizutani M, Katayama S (2011) X-ray investigation of melt flow behavior under magnetic stirring regime in laser beam welding of aluminum. J Laser Appl 23(3):032002

    Article  Google Scholar 

  26. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2013) About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts. Int J Heat Mass Transf 60:309–321. doi:10.1016/j.ijheatmasstransfer.2013.01.015

    Article  Google Scholar 

  27. Yu SF, Zhang YS, Lei Y, Xie ZQ, Wu DZ, Liu P (2006) The magnetic stirring mechanism of rotating magnetic field on non-magnetic alloy of laser welding. Transactions of the China Welding Institution 27(3):109–112

    Google Scholar 

  28. Bachmann M, Avilov V, Gumenyuk A, Rethmeier M (2014) Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam welding of austenitic stainless steel. J Mater Process Technol 214(3):578–591

    Article  Google Scholar 

  29. Sun Q, Wang J, Cai C, Li Q, Feng J (2016) Optimization of magnetic arc oscillation system by using double magnetic pole to TIG narrow gap welding. Int J Adv Manuf Technol 86(1–4):761–767. doi:10.1007/s00170-015-8214-8

    Article  Google Scholar 

  30. Zhang X, Zhao Z, Wang C, Yan F, Hu X (2016) The effect of external longitudinal magnetic field on laser-MIG hybrid welding. Int J Adv Manuf Technol 85(5):1735–1743. doi:10.1007/s00170-015-8035-9

    Article  Google Scholar 

  31. Hua AB, Yin SY, Chen SJ, Bai SJ, Zhang XL (2010) Behavior of arc and drop transfer of MAG welding controlled by longitudinal magnetic field. Chinese Journal of Mechanical Engineering 46(14):95–100

    Article  Google Scholar 

  32. Liu S, Liu F, Zhang H, Shi Y (2012b) Analysis of droplet transfer mode and forming process of weld bead in CO 2 laser–MAG hybrid welding process. Opt Laser Technol 44(4):1019–1025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhao, Z., Mi, G. et al. Effect of external longitudinal magnetic field on arc plasma characteristics and droplet transfer during laser-MIG hybrid welding. Int J Adv Manuf Technol 92, 2185–2195 (2017). https://doi.org/10.1007/s00170-017-0293-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-0293-2

Keywords

Navigation