Skip to main content
Log in

Why are bone and soft tissue measurements of the TT-TG distance on MRI different in patients with patellar instability?

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To determine whether the tibial tuberosity-to-trochlear groove distance (TT-TG) and patellar tendon-to-trochlear groove distance (PT-TG) are equal, whether the bony and cartilaginous points coincide in the trochlea, and whether the insertion of the PT coincides with the most anterior point of the TT in patients with patellar instability.

Methods

Fifty-three MRI scans of patients with patellar instability were examined. TT-TG and PT-TG were measured by three examiners in 31 knees. Additionally, the bone–cartilage distance in the trochlea [trochlear cartilage to trochlear bone (TC-TB)] and the distance between the mid-point of the PT insertion and the most anterior point of the TT (PT-TT) were measured by one examiner. The intraclass correlation coefficient was used to evaluate the reliability of the measurements between the three examiners. The relationships between the measurements were determined, the means of the measurements were calculated, and the correlations between PT-TG and TT-TG, PT-TT, and TC-TB were assessed.

Results

The ICC was above 0.8. PT-TG was 3.7 mm greater than TT-TG. The TC and TB coincided in 73 % of cases, and the mean TC-TB was 0.3 mm. The PT was lateral to the TT in 94 % of the cases, and the mean PT-TT was 3.4 mm. The Pearson’s correlation coefficients between PT-TG and TT-TG, PT-TT, and TC-TB were 0.946, 0.679, and 0.199, respectively.

Conclusion

TT-TG underestimated PT-TG, primarily due to the lateralization of the PT insertion relative to the most anterior point of the TT. Clinical relevance: our study shows that in patients with patellar instability, there are differences in the absolute values of TT-TG and PT-TG, as previously reported for patients without patellar instability. Hence, normal cut-off values based on case–control studies of TT-TG cannot be equivalently used when measuring PT-TG to indicate TT medialization in patients with patellar instability. It is also important to note that the clinical outcomes cannot be directly compared between patients evaluated using TT-TG versus PT-TG measurements.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Amis AA (2007) Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthrosc 15:48–56

    Article  PubMed  Google Scholar 

  2. Arendt EA, Dejour D (2013) Patella instability: building bridges across the ocean a historic review. Knee Surg Sports Traumatol Arthrosc 21:279–293

    Article  PubMed  Google Scholar 

  3. Balcarek P, Jung K, Frosch KH, Sturmer KM (2011) Value of the tibial tuberosity-trochlear groove distance in patellar instability in the young athlete. Am J Sports Med 39:1756–1761

    Article  PubMed  Google Scholar 

  4. Balcarek P, Walde TA, Frosch S, Schuttrumpf JP, Wachowski MM, Sturmer KM, Frosch KH (2011) Patellar dislocations in children, adolescents and adults: a comparative MRI study of medial patellofemoral ligament injury patterns and trochlear groove anatomy. Eur J Radiol 79:415–420

    Article  PubMed  Google Scholar 

  5. Beaconsfield T, Pintore E, Maffulli N, Petri GJ (1994) Radiological measurements in patellofemoral disorders. A review. Clin Orthop Relat Res 308:18–28

    Google Scholar 

  6. Biyani R, Elias JJ, Saranathan A, Feng H, Guseila LM, Morscher MA, Jones KC (2014) Anatomical factors influencing patellar tracking in the unstable patellofemoral joint. Knee Surg Sports Traumatol Arthrosc 22:2334–2341

    Article  PubMed  Google Scholar 

  7. Brown DE, Alexander AH, Lichtman DM (1984) The Elmslie-Trillat procedure: evaluation in patellar dislocation and subluxation. Am J Sports Med 12:104–109

    Article  CAS  PubMed  Google Scholar 

  8. Camp CL, Heidenreich MJ, Dahm DL, Stuart MJ, Levy BA, Krych AJ (2016) Individualizing the tibial tubercle-trochlear groove distance: patellar instability ratios that predict recurrent instability. Am J Sports Med 44:393–399

    Article  PubMed  Google Scholar 

  9. Camp CL, Stuart MJ, Krych AJ, Levy BA, Bond JR, Collins MS, Dahm DL (2013) CT and MRI measurements of tibial tubercle-trochlear groove distances are not equivalent in patients with patellar instability. Am J Sports Med 41:1835–1840

    Article  PubMed  Google Scholar 

  10. Cooke TD, Price N, Fisher B, Hedden D (1990) The inwardly pointing knee. An unrecognized problem of external rotational malalignment. Clin Orthop Relat Res 260:56–60

    Google Scholar 

  11. Daynes J, Hinckel BB, Farr J (2015) Tibial tuberosity-posterior cruciate ligament distance. J Knee Surg. doi:10.1055/s-0035-1564732

    PubMed  Google Scholar 

  12. Dejour D, Le Coultre B (2007) Osteotomies in patello-femoral instabilities. Sports Med Arthrosc 15:39–46

    Article  PubMed  Google Scholar 

  13. Dejour H, Walch G, Nove-Josserand L, Guier C (1994) Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc 2:19–26

    Article  CAS  PubMed  Google Scholar 

  14. Farr J, Covell DJ, Lattermann C (2012) Cartilage lesions in patellofemoral dislocations: incidents/locations/when to treat. Sports Med Arthrosc 20:181–186

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fithian DC, Paxton EW, Stone ML, Silva P, Davis DK, Elias DA, White LM (2004) Epidemiology and natural history of acute patellar dislocation. Am J Sports Med 32:1114–1121

    Article  PubMed  Google Scholar 

  16. Fulkerson JP (1983) Anteromedialization of the tibial tuberosity for patellofemoral malalignment. Clin Orthop Relat Res 177:176–181

    Google Scholar 

  17. Guerrero P, Li X, Patel K, Brown M, Busconi B (2009) Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study. BMC Sports Med Arthrosc Rehabil Ther Technol 1:17

    Article  Google Scholar 

  18. Hawkins RJ, Bell RH, Anisette G (1986) Acute patellar dislocations. The natural history. Am J Sports Med 14:117–120

    Article  CAS  PubMed  Google Scholar 

  19. Heidenreich MJ, Camp CL, Dahm DL, Stuart MJ, Levy BA, Krych AJ (2015) The contribution of the tibial tubercle to patellar instability: analysis of tibial tubercle-trochlear groove (TT-TG) and tibial tubercle-posterior cruciate ligament (TT-PCL) distances. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3715-4

    PubMed  Google Scholar 

  20. Hinckel BB, Gobbi RG, Filho EN, Pecora JR, Camanho GL, Rodrigues MB, Demange MK (2015) Are the osseous and tendinous-cartilaginous tibial tuberosity-trochlear groove distances the same on CT and MRI? Skeletal Radiol 44:1085–1093

    Article  PubMed  Google Scholar 

  21. Hinckel BB, Gobbi RG, Kihara Filho EN, Demange MK, Pécora JR, Camanho GL (2015) Patellar tendon–trochlear groove angle measurement: a new method for patellofemoral rotational analyses. Orthop J Sports Med 3:2325967115601031

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ho CP, James EW, Surowiec RK, Gatlin CC, Ellman MB, Cram TR, Dornan GJ, LaPrade RF (2015) Systematic technique-dependent differences in CT versus MRI measurement of the tibial tubercle-trochlear groove distance. Am J Sports Med 43:675–682

    Article  PubMed  Google Scholar 

  23. Koeter S, Diks MJ, Anderson PG, Wymenga AB (2007) A modified tibial tubercle osteotomy for patellar maltracking: results at two years. J Bone Joint Surg Br 89:180–185

    Article  CAS  PubMed  Google Scholar 

  24. Koeter S, Horstmann WG, Wagenaar FC, Huysse W, Wymenga AB, Anderson PG (2007) A new CT scan method for measuring the tibial tubercle trochlear groove distance in patellar instability. Knee 14:128–132

    Article  PubMed  Google Scholar 

  25. Kohlitz T, Scheffler S, Jung T, Hoburg A, Vollnberg B, Wiener E, Diederichs G (2013) Prevalence and patterns of anatomical risk factors in patients after patellar dislocation: a case control study using MRI. Eur Radiol 23:1067–1074

    Article  PubMed  Google Scholar 

  26. Kuroda R, Kambic H, Valdevit A, Andrish JT (2001) Articular cartilage contact pressure after tibial tuberosity transfer. A cadaveric study. Am J Sports Med 29:403–409

    Article  CAS  PubMed  Google Scholar 

  27. Mani S, Kirkpatrick MS, Saranathan A, Smith LG, Cosgarea AJ, Elias JJ (2011) Tibial tuberosity osteotomy for patellofemoral realignment alters tibiofemoral kinematics. Am J Sports Med 39:1024–1031

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pandit S, Frampton C, Stoddart J, Lynskey T (2011) Magnetic resonance imaging assessment of tibial tuberosity-trochlear groove distance: normal values for males and females. Int Orthop 35:1799–1803

    Article  PubMed  PubMed Central  Google Scholar 

  29. Saudan M, Fritschy D (2000) AT-TG (anterior tuberosity-trochlear groove): interobserver variability in CT measurements in subjects with patellar instability. Rev Chir Orthop Reparatrice Appar Mot 86:250–255

    CAS  PubMed  Google Scholar 

  30. Schoettle PB, Zanetti M, Seifert B, Pfirrmann CW, Fucentese SF, Romero J (2006) The tibial tuberosity-trochlear groove distance; a comparative study between CT and MRI scanning. Knee 13:26–31

    Article  PubMed  Google Scholar 

  31. Seeley MA, Knesek M, Vanderhave KL (2013) Osteochondral injury after acute patellar dislocation in children and adolescents. J Pediatr Orthop 33:511–518

    Article  PubMed  Google Scholar 

  32. Seitlinger G, Scheurecker G, Hogler R, Labey L, Innocenti B, Hofmann S (2012) Tibial tubercle-posterior cruciate ligament distance: a new measurement to define the position of the tibial tubercle in patients with patellar dislocation. Am J Sports Med 40:1119–1125

    Article  PubMed  Google Scholar 

  33. Shih YF, Bull AM, Amis AA (2004) The cartilaginous and osseous geometry of the femoral trochlear groove. Knee Surg Sports Traumatol Arthrosc 12:300–306

    Article  PubMed  Google Scholar 

  34. Skelley N, Friedman M, McGinnis M, Smith C, Hillen T, Matava M (2015) Inter- and intraobserver reliability in the MRI measurement of the tibial tubercle-trochlear groove distance and trochlea dysplasia. Am J Sports Med 43:873–878

    Article  PubMed  Google Scholar 

  35. Staeubli HU, Bosshard C, Porcellini P, Rauschning W (2002) Magnetic resonance imaging for articular cartilage: cartilage-bone mismatch. Clin Sports Med 21:417–433

    Article  PubMed  Google Scholar 

  36. Staubli HU, Durrenmatt U, Porcellini B, Rauschning W (1999) Anatomy and surface geometry of the patellofemoral joint in the axial plane. J Bone Joint Surg Br 81:452–458

    Article  CAS  PubMed  Google Scholar 

  37. Thakkar RS, Del Grande F, Wadhwa V, Chalian M, Andreisek G, Carrino JA, Eng J, Chhabra A (2015) Patellar instability: CT and MRI measurements and their correlation with internal derangement findings. Knee Surg Sports Traumatol Arthrosc. doi:10.1007/s00167-015-3614-8

    PubMed  Google Scholar 

  38. Wagenaar FC, Koeter S, Anderson PG, Wymenga AB (2007) Conventional radiography cannot replace CT scanning in detecting tibial tubercle lateralisation. Knee 14:51–54

    Article  PubMed  Google Scholar 

  39. Wagner D, Pfalzer F, Hingelbaum S, Huth J, Mauch F, Bauer G (2013) The influence of risk factors on clinical outcomes following anatomical medial patellofemoral ligament (MPFL) reconstruction using the gracilis tendon. Knee Surg Sports Traumatol Arthrosc 21:318–324

    Article  PubMed  Google Scholar 

  40. Wilcox JJ, Snow BJ, Aoki SK, Hung M, Burks RT (2012) Does landmark selection affect the reliability of tibial tubercle-trochlear groove measurements using MRI? Clin Orthop Relat Res 470:2253–2260

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wittstein JR, Bartlett EC, Easterbrook J, Byrd JC (2006) Magnetic resonance imaging evaluation of patellofemoral malalignment. Arthroscopy 22:643–649

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo G. Gobbi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hinckel, B.B., Gobbi, R.G., Kihara Filho, E.N. et al. Why are bone and soft tissue measurements of the TT-TG distance on MRI different in patients with patellar instability?. Knee Surg Sports Traumatol Arthrosc 25, 3053–3060 (2017). https://doi.org/10.1007/s00167-016-4095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-016-4095-0

Keywords

Navigation