Skip to main content

Advertisement

Log in

Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Condensed tannins are major flavonoid end products that affect the nutritional quality of many legume seeds. They chelate minerals and interact with proteins, thus reducing their bioavailability. Tannins also contribute to seed coat color and pigment distribution or intensity. The objective of this study was to analyze the relationship between quantitative trait loci (QTL) for seed tannin concentration in common bean and Mendelian genes for seed coat color and pattern. Three populations of recombinant inbred lines, derived from crosses between the Andean and Mesoamerican genepools were used for QTL identification and for mapping STS markers associated with seed color loci. Seed coat condensed tannins were determined with a butanol–HCl method and a total of 12 QTL were identified on separate linkage groups (LGs) in each of the populations with individual QTL explaining from 10 to 64% of the phenotypic variation for this trait. Loci on linkage groups B3 and B10 were associated with the Mendelian genes Z and Bip for partly colored seed coat pattern, while a QTL on linkage group B7 was associated with the P gene which is the primary locus for the control of color expression in beans. In conclusion, this study found that the inheritance of tannin concentration fits an oligogenic model and identifies novel putative alleles at seed coat color and pattern genes that control tannin accumulation. The results will be important for the genetic improvement of nutritionally enhanced or biofortified beans that have health promoting effects from higher polyphenolics or better iron bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adewusi SRA, Falade OS (1996) The effects of cooking on extractable tannin, phytate, sugars and mineral solubility in some improved Nigerian legume seeds. Food Sci Technol Int 2:231–239

    Article  CAS  Google Scholar 

  • Barahona R, Lascano CE, Cochran R, Morrill J, Titgemeyer EC (1997) Intake, digestion, and nitrogen utilization by sheep fed tropical legumes with contrasting tannin concentration and astringency. J Anim Sci 75:1633–1640

    PubMed  CAS  Google Scholar 

  • Bassett MJ (1994) The margo (mar) seedcoat character and the t mar interaction in common bean. J Hered 85:404–407

    Google Scholar 

  • Bassett MJ (1996) New genes, stp and stp hbw, for flower and seedcoat pattern in common bean. J Am Soc Hort Sci 121:388–392

    Google Scholar 

  • Bassett MJ (1999) Allelism found between two common bean genes, hilum ring color (D) and partly colored seed coat pattern (Z), formerly assumed to be independent. J Am Soc Hortic Sci 124:649–653

    Google Scholar 

  • Bassett MJ (2002) Inheritance of reverse margo seed coat pattern and allelism between the genes J for seed coat color and L for partly colored seed coat pattern in common bean. J Am Soc Hortic Sci 127:56–61

    CAS  Google Scholar 

  • Bassett MJ (2007) Genetics of seed coat color and pattern in common bean. Plant Breed Rev 28:239–315

    Article  CAS  Google Scholar 

  • Bassett MJ, McClean PE (2000) A brief review of the genetics of partly colored seed coats in common bean. Annu Rep Bean Improv Coop 43:99–101

    Google Scholar 

  • Beebe S, Rojas-Pierce M, Yan X, Blair M, Pedraza F, Muñoz F, Tohme J, Lynche JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Sci 46:413–423

    Article  CAS  Google Scholar 

  • Beninger CW, Hosfield GL (1998) A phytochemical study of genotypes of Phaseolus vulgaris L. with yellow brown and green brown seedcoat color. Annu Rep Bean Improv Coop 41:129–130

    Google Scholar 

  • Beninger CW, Hosfield GL (1999) Flavonoid composition of three genotypes of dry bean (Phaseolus vulgaris) differing in seed coat color. J Am Soc Hortic Sci 124:514–518

    CAS  Google Scholar 

  • Beninger CW, Hosfield GL (2003) Antioxidant activity of extracts, condensed tannin fractions, and pure flavonoids from Phaseolus vulgaris L. seed coat color genotypes. J Agric Food Chem 51:7879–7883

    Article  PubMed  CAS  Google Scholar 

  • Beninger CW, Hosfield GL, Nair MG (1998) Flavonol glycosides from the seed coat of a new Manteca-type dry bean (Phaseolus vulgaris L). J Agric Food Chem 46:2906–2910

    Article  CAS  Google Scholar 

  • Blair MW, Pedraza F, Buendía HF, Gaitán-Solís E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Brune M, Rossander L, Hallberg L (1989) Iron absorption and phenolic compounds: importance of different phenolic structures. Eur J Clin Nutr 43:547–558

    PubMed  CAS  Google Scholar 

  • Cabrera A, Martin A (1989) Genetics of tannin content and its relationship with flower and testa colors in Vicia faba. J Agric Sci 113:93–98

    Article  Google Scholar 

  • CIAT (Centro Internacional de Agricultura Tropical) (1987) Standard system for the evaluation of bean germplasm. Schoonhoven AV, Pastor-Corrales MA (compilers). Cali, Colombia

  • Dangles O, Fargeix G, Dufour C (2000) Antioxidant properties of anthocyanins and tannins: a mechanistic investigation with catechin and the 3′,4′,7-trihydroxyavylium ion. J Chem Soc 2:1653–1663

    Google Scholar 

  • de Mejía E, Guzmán SH, Acosta JA, Reynoso R, Ramirez E, Pons-Hernandez JL, Gonzalez-Chavira MM, Castellanos JZ, Kelly JD (2003) Effect of cultivar and growing location on the trypsin inhibitors, tannins, and lectins of common beans (Phaseolus vulgaris L.) grown in the semiarid highlands of Mexico. J Agric Food Chem 51:5962–5966

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Xie DY, Sharma SB (2005) Proanthocyanidins—a final frontier in flavonoid research? New Phytol 165:9–28

    Article  PubMed  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Emerson PA (1909) Factors for mottling in beans. Am Breed Assoc 5:368–376

    Google Scholar 

  • Erdmann PM, Lee RK, Basset MJ, Mcclean PE (2002) A molecular marker tightly linked to P, a gene required for flower and seed coat color in common bean (Phaseolus vulgaris L.), contains the ty3-gypsy retrotransposon tpv3g. Genome 45:728–736

    Article  PubMed  CAS  Google Scholar 

  • Fairweather-Tait SJ (2001) Iron. J Nutr 131:1383S–1386S

    PubMed  CAS  Google Scholar 

  • Feenstra WJ (1960) Biochemical aspects of seed coat color inheritance in Phaseolus vulgaris L. Med. Landbouwhogeschool Wageningen 60:1–53

    CAS  Google Scholar 

  • Foo LY, Lu Y, Mcnabb WC, Waghorn G, Ulyatt MJ (1997) Proanthocyanidins from Lotus penduculatus. Phytochemistry 45:1689–1696

    Article  CAS  Google Scholar 

  • Freyre R, Skroch PW, Geffory V, Adam-Blondon AF, Shirmohamadali A, Johnson WC, Llaca V, Nodari RO, Periera PA, Tsai SM, Tohme J, Dron M, Nienhuis J, Vallejos CE, Gepts P (1998) Towards an integrated linkage map of common bean. 4 Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Guzmán-Maldonado H, Castellanos J, Gonzalez E (1996) Relationship between theoretical and experimentally detected tannin content of common beans (Phaseolus vulgaris L.). Food Chem 55:333–335

    Article  Google Scholar 

  • Guzmán-Maldonado SH, Martinez O, Acosta JA, Guevara F, Paredes O (2003) Putative quantitative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    Article  Google Scholar 

  • Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL (1998) High molecular weight plant polyphenolics (tannins) as biological antioxidants. J Agric Food Chem 46:1887–1892

    Article  CAS  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  PubMed  CAS  Google Scholar 

  • Huits HSM, Gerats AGM, Kreike MM, Mol JNM, Koes R (1994) Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Plant J 6:295–310

    Article  PubMed  CAS  Google Scholar 

  • Iniestra J, Ibarra F, Medrano H, Rocha N, Gallegos M (2001) Antinutritional factors and antioxidative activity of improved common bean cultivars. Annu Rep Bean Improv Coop 44:167–168

    Google Scholar 

  • Jackson FS, Mcnabb WC, Barry TN, Foo LY, Peters JS (1996) The condensed tannin content of a range of subtropical and temperate forages and the reactivity of condensed tannin with ribulose-1,-5-bis-phosphate carboxylase (rubisco) protein. J Sci Food Agric 72:483–492

    Article  CAS  Google Scholar 

  • Jones WT, Broadhurst RB, Lyttleton JW (1976) The condensed tannins of pasture legume species. Phytochemistry 15:1407–1409

    Article  CAS  Google Scholar 

  • Kantar FP, Hebblethwaite D, Pilbeam CJ (1996) Factors influencing disease resistance in high and low tannin Vicia faba. J Agric Sci 127:83–88

    Article  Google Scholar 

  • Koinange EMK, Singh SP, Gepts P (1996) Genetic control of the domestication syndrome in common bean. Crop Sci 36:1037–1045

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) Mapmaker an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li Y-G, Tanner G, Larkin P (1996) The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J Sci Food Agric 70:89–101

    Article  CAS  Google Scholar 

  • Ma Y, Bliss FA (1978) Tannin content and inheritance in common bean. Crop Sci 18:201–204

    CAS  Google Scholar 

  • Makkar HPS, Gamble G, Becker K (1999) Limitation of the butanol–hydrochloric acid–iron assay for bound condensed tannins. Food Chem 66:129–133

    Article  CAS  Google Scholar 

  • Marles SMA, Gruber MY (2004) Histochemical characterization of unextractable seed coat pigments and quantification of extractable lignin in the Brassicaceae. J Sci Food Agric 84:251–262

    Article  CAS  Google Scholar 

  • Marles SMA, Ray H, Gruber MY (2003) New perspectives on proanthocyanidin biochemistry and molecular regulation. Phytochemistry 64:367–383

    Article  PubMed  CAS  Google Scholar 

  • McClean PE, Lee RK, Otto C, Gepts P, Basset MJ (2002) Molecular and phenotypic mapping of genes controlling seed coat pattern and color in common bean (Phaseolus vulgaris L.). J Hered 93:148–152

    Article  PubMed  CAS  Google Scholar 

  • McDonald M, Mila I, Scalbert A (1996) Precipitation of metal ions by plant polyphenols: optimal conditions and origin of precipitation. J Agric Food Chem 44:599–606

    Article  CAS  Google Scholar 

  • Mira L, Fernandez T, Santos M, Rocha R, Florencio H, Jennings KR (2002) Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic Res 36:1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Naczk M, Oickle D, Pink D, Shahidi F (1996) Protein precipitating capacity of crude canola tannins: effect of pH, tannin, and protein concentrations. J Agric Food Chem 44:2144–2148

    Article  CAS  Google Scholar 

  • Ochoa IE, Blair MW, Lynch JP (2006) QTL analysis of adventitious root formation in common bean under contrasting phosphorus availability. Crop Sci 46:1609–1621

    Article  CAS  Google Scholar 

  • Porter LJ (1989) Tannins. Methods Plant Biochem 1:389–419

    CAS  Google Scholar 

  • Porter LJ, Hrstich LN, Chan BG (1986) The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 25:223–230

    Article  CAS  Google Scholar 

  • Prakken R (1970) Inheritance of colours in Phaseolus vulgaris L. II. A critical review. Med. Landbouwhogeschool Wageningen 70:1–38

    Google Scholar 

  • Prakken R (1972) Inheritance of colours in Phaseolus vulgaris L. III. On genes for red seedcoat color and a general synthesis. Med. Landbouwhogeschool Wageningen 72:1–82

    Google Scholar 

  • Price ML, Butler LG (1977) Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain. J Agric Food Chem 25:1268–1273

    Article  CAS  Google Scholar 

  • Quattrocchio F, Wing JF, Leppen HTC, Mol JNM, Koes R (1993) Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497–1512

    Article  PubMed  CAS  Google Scholar 

  • Reddy NR, Pierson MD (1985) Dry bean tannins: a review of nutritional implications. JAOCS 62:541–549

    Article  CAS  Google Scholar 

  • Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J Anim Sci 73:1516

    PubMed  CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30:3875–3883

    Article  CAS  Google Scholar 

  • Schofield P, Mbugua DM, Pell AN (2001) Analysis of condensed tannins: a review. Anim Feed Sci Technol 91:21–40

    Article  CAS  Google Scholar 

  • Sicard D, Nanni L, Porfiri O, Bulfon D, Papa R (2005) Genetic diversity of Phaseolus vulgaris L. and P. coccineus L. landraces in central Italy. Plant Breed 124:464–472

    Article  CAS  Google Scholar 

  • Strumeyer DH, Malin MJ (1975) Condensed tannins in grain sorghum isolation fractionation and characterization. J Agric Food Chem 23:909–914

    Article  PubMed  CAS  Google Scholar 

  • Takeoka GR, Dao LT, Full GH, Wong RY, Harden LA, Edwards RH, de JBerrios J (1997) Characterization of black bean (Phaseolus vulgaris L.) anthocyanins. J Agric Food Chem 45:3395–3400

    Article  CAS  Google Scholar 

  • Terrill TH, Rowan AM, Douglas GB, Barry TN (1992) Determination of extractable and bound condensed tannin concentrations in forage plants protein concentrate meals and cereal grains. J Sci Food Agric 58:321–329

    Article  CAS  Google Scholar 

  • Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16:819–835

    Article  PubMed  CAS  Google Scholar 

  • Van Der Poel AFB, Gravendeel S, Boer H (1991) Effect of different processing methods on tannin content and in vitro protein digestibility of faba bean Vicia faba L. Anim Feed Sci Technol 33:49–58

    Article  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.). J Agric Food Chem 48:3576–3580

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Steve Beebe and Paul Gepts for germplasm development, Yercil Viera, and Agobardo Hoyos for field management, Carlos Lascano and Patricia Avila for help with laboratory analysis, Phil McClean for phenotypic data in the B × J population and Myriam Cristina Duque for statistical analysis. This research was supported by the Harvest Plus Challenge Program and CIAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Blair.

Additional information

Communicated by F. Muehlbauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldas, G.V., Blair, M.W. Inheritance of seed condensed tannins and their relationship with seed-coat color and pattern genes in common bean (Phaseolus vulgaris L.). Theor Appl Genet 119, 131–142 (2009). https://doi.org/10.1007/s00122-009-1023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1023-4

Keywords

Navigation