Skip to main content
Log in

Impact of termite activity on soil environment: A perspective from their soluble chemical components

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

An investigation on varied types of termite mounds relative to the nearby soils that are not inhabited by the termites in different places of Cameroon show that the activity of the termites is increasing the contents of most major and some trace elements in the termite mounds, except for Si and sometimes Fe, Mn, Na and K. These released elements are relocated into newly formed mineral phases that are dissolved by either H2O or dilute HCl leachings. The Ca and Mn released by the termite activity testify for crystallization of Ca-Mg carbonates and phosphates as well as of Fe oxy-hydroxides and/or Mn hydroxides. Termite activity also induces an increase in the lanthanide contents, the mound materials being especially enriched in light lanthanides relative to the corresponding soils without termite activity. The shapes of the patterns support precipitation of Mn-Fe oxy-hydroxides and Ca carbonates-phosphates. The increased amounts of Eu and Ce linked to termite activity seem to relate to the occurrence of reducing agents that are released by the termites, modifying Eu+3 into Eu+2 and Ce+4 into Ce+3, favoring in turn selective incorporation of Eu+2 and Ce3+ in the new phases of the termite mounds. Another consequence of the termite activity is the precipitation of H2O and HCl extractable phases having low Sr/Ca ratios. Even if the K/Rb values of the termite mounds are typical for common soil-forming silicate minerals, their relocation by an inorganic process alone does not explain an abnormally high ratio in the H2O leachable mineral phases. It was also shown that the main source for K and Rb of the dissolved phases is not only the interlayer site of clay particles, but also nutrients immobilized in and by the termites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akamigbo, F., (1984). The role of the nasute termites in the genesis and fertility of Nigerian soils. Pedologie, 34(2), 179–189.

    Google Scholar 

  • Breznak, J. A.; Brune, A., (1994). Role of microorganisms in the digestion of lignocellulose by termites. Ann. Rev. Entomol., 39, 453–487.

    Article  CAS  Google Scholar 

  • Briese, D. T., (1982). The effect of ants on the soil of a semi-arid saltbush habitat. Les effets des Fourmis sur le sol d’un habitat salé semi-aride à végétation buissonnante. Insect. Soc., 29(2), 375–382.

    Article  Google Scholar 

  • Brossard, M.; Lopez-Hernandez, D.; Lepage, M.; Leprun, J. C., (2007). Nutrient storage in soils and nests of mound-building Trinervitermes termites in Central Burkina Faso: consequences for soil fertility. Biol. Fert. Soils, 43(4), 437–447.

    Article  CAS  Google Scholar 

  • Brune, A.; Kuhl, M., (1996). pH profiles of the extremely alkaline hind guts of soil — feeding termites (isoptera: Termitidae) determined with microelectrodes. J. Insect. Physiol., 42(11), 1121–1127.

    Article  CAS  Google Scholar 

  • Brune, A.; Emerson, D.; Breznak, J. A., (1995). The termite gut microflora as an oxygen sink: Microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl. Environ. Microb., 61(7), 2681–2687.

    CAS  Google Scholar 

  • Chao, T. T.; Zhou, L., (1983). Extraction techniques for elective dissolution of amorphous ion oxides from soils and sediments. Soil Sci. Soc. Am. J., 47(2), 225–232.

    Article  CAS  Google Scholar 

  • Chaudhuri, S.; Clauer, N.; Semhi, K., (2007). Plant decay as a major control of river dissolved potassium: A first estimate. Chem. Geo., 243(1–2), 178–190.

    Article  CAS  Google Scholar 

  • Clauer, N.; Chaudhuri, S., (1995). Clays in crustal environments, isotope dating and tracing. Springer Verlag, Heidelberg, Berlin, 359.

    Book  Google Scholar 

  • Donovan, S. E.; Eggleton, P.; Dubbin, W. E.; Batchelder, M.; Dibog, L., (2001). The effect of a soil feeding termite, Cubitermes fungifaber (Isoptera: Termitidae) on soil properties: Termites may be an important source of soil microhabitat heterogeneity in tropical forests. Pedobiologia, 45(1), 1–11.

    Article  Google Scholar 

  • Heikens, A.; Peijenburg, W. J. G. M.; Hendriks, A. J., (2001). Bioaccumulation of heavy metals in terrestrial invertebrates. Environ. Pollut., 113(3), 385–393.

    Article  CAS  Google Scholar 

  • Howse, P. E., (1970). Termites: A study in social behaviour. Hutchinson University Library, London, 150.

    Google Scholar 

  • Jouquet, P.; Mamou, L.; Lepage, M.; Velde, B., (2002). Effect of termites on clay minerals in tropical soils; fungus-growing termites as weathering agents. Eur. J. Soil Sci., 53(4), 521–527.

    Article  Google Scholar 

  • Jouquet, P.; Tessier, D.; Lepage, M., (2004). The soil structural stability of termite nests: role of clays in Macrotermes bellicosus (Isoptera, Macrotermitinae) mound soils. Eur. J. Soil Biol., 40(1), 23–29.

    Article  Google Scholar 

  • Jungerius, P. D.; Van Den Ancker, J. A. M.; Mücher, H. J., (1999). The contribution of termites to the microgranular structure of soils on the Uasin Gishu Plateau, Kenya. Catena, 34(3), 349–363.

    Article  Google Scholar 

  • Lobry De Bruyn, L. A.; Conacher, A. J., (1990). The role of termites and ants in soil modification: A review. Aust. J. Res., 28(1), 55–93.

    Google Scholar 

  • Lopez-Hernandez, D.; Brossard, M.; Fardeau, J. C.; Lepage, M., (2006). Effect of different termite feeding groups on P sorption and P availability in African and south American savannas. Biol. Fert. Soils, 42(3), 207–214.

    Article  Google Scholar 

  • Lu, A.; Gao, X.; Qin, S.; Wang, C., (2003). Cryptomelane (KxMn8-xO16): Natural active octahedral molecular sieve (OMS-2). Chinese Sci. Bull., 48(9), 920–923.

    CAS  Google Scholar 

  • Mahaney, W. C; Zippin, J.; Milner, M. W.; Sanmugadas, K.; Kancock, R. G. V.; Aufreiter, S., (1999). Chemistry, mineralogy and microbiology of termite mound soil eaten by champanzees of the Mahal mountains, Western Tanzania. J. Trop. Ecol., 15(5), 565–588

    Article  Google Scholar 

  • Mando, A.; Stroosnijder, L.; Brussard, L., (1996). Effects of termites on infiltration into crusted soil. Geoderma, 74(1–2), 107–113.

    Article  Google Scholar 

  • McLennan, S., (1989). Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In: Geochemistry and mineralogy of rare earth elements. In: B. Lipin and G. McKay (Eds.). Mineralogical Society of America. Rev. Mineral. Geochem., 21 (1), 169–200.

  • Millot, G., (1964). Géologie des Argiles-Altérations, Sédimentologie, Géochimie. Masson et Cie, Paris, 499.

    Google Scholar 

  • Ndam Ngoupayou, J. R., (1997). Bilans hydrogéochimiques sous forêt tropicale humide en Afrique: du bassin expérimental de Nsimi-Zoétélé aux réseaux hydrographiques du Nyong et de la Sanaga au Sud-Cameroun. PhD thesis University Pierre et Marie Curie, Paris VI.

    Google Scholar 

  • Ndiaye, D.; Lepage, M.; Sall Cire, E.; Brauman, A., (2004). Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant. Soils, 265(1–2), 189–196.

    Article  CAS  Google Scholar 

  • Noirot, C., (1970). The nest of termites, In: K. Krishna and F.M. Weesner (Eds.), Biology of termites. Academic Press, New York. Vol. 2, 73–125.

    Google Scholar 

  • Nye, P. H., (1955). Some soil-forming processes in the humid tropics, the action of the soil fauna. J. Soil Sci., 6(1), 73–83.

    Article  Google Scholar 

  • Pomeroy, D. E., (1976). Some effects of mound building termites on soils in Uganda. J. Soil Sci., 27(3), 377–394

    Article  CAS  Google Scholar 

  • Rives, V.; Del Arco, M.; Prieto, O., (2004). Birnessites prepared by ion exchange. Structural evolution with temperature. Boll. Soc. Esp. de Cer. y Vid., 43(2), 142–147.

    Article  CAS  Google Scholar 

  • Roose Amsaleg, C.; Brygoo, Y.; Harry, M., (2004). Ascomycete diversity in soil-feeding termite nests and soils from a tropical rainforest. Environ. Microbiol., 6(5), 462–469.

    Article  Google Scholar 

  • Samuel, J.; Rouault, R.; Besnus, Y., (1985). Analyse multi-élémentaire standardisée des matériaux géologiques en spectrométrie d’émission par plasma à couplage inductif. Analysis, 13(7), 312–317.

    CAS  Google Scholar 

  • Sys, C., (1955). The importance of termites in the formation of Latosols in the region of Elizabethville. Sols Africains, 3, 392–395.

    CAS  Google Scholar 

  • Timofeev, B. V., (1987). A biological factor in tropical pedogenesis. Moscow U. Soil Bull., 42(1), 70–72.

    Google Scholar 

  • Vandecasteele, B.; Samyn, J.; Quataert, P.; Muys, B.; Tack, F. M. G., (2004). Earthworm biomass as additional information for risk assessment of heavy metal biomagnification: a case study for dredged sediment-derived soils and polluted floodplain soils. Environ. Pollut., 129(3), 363–375.

    Article  CAS  Google Scholar 

  • Wood, T. G., (1988). Termites and the soil environment. Biol. Fert. Soils, 6(3), 228–236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Semhi Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semhi, K., Chaudhuri, S., Clauer, N. et al. Impact of termite activity on soil environment: A perspective from their soluble chemical components. Int. J. Environ. Sci. Technol. 5, 431–444 (2008). https://doi.org/10.1007/BF03326039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326039

Keywords

Navigation