Skip to main content
Log in

A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A model of direct-drive friction welding has been developed, which can be used to predict the time-temperature histories, the resultant microstructure, and the microhardness distribution across the weld interface of direct-drive friction-welded AISI/SAE 1045 steel bars. Experimentally measured power and axial displacement data were used in conjunction with a finite-element transient thermal model to predict the time-temperature history within the heat-affected zone (HAZ) of the weld. This was then used with a microstructure evolution model to predict the volume fraction of the subsequent microconstituents and the microhardness distribution across the weld interface of welds produced using three significantly different welding conditions: one with optimal conditions, one with a long burn-off time, and one with high axial pressure and rotational speed but short burn-off time. There was generally good agreement between the predicted and the measured time-temperature histories, volume fraction of the resultant microstructures, and microhardness distribution in the HAZ of AISI/SAE 1045 steel friction welds produced using these three significantly different welding conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Krauss: Steels — Heat Treatment and Processing Principles, 1st ed., ASM Int’l, Materials Park, OH, 1990.

    Google Scholar 

  2. V.I. Vill: Welding Production (translated from Russian), 1959, vol. 6, pp. 31–41.

    Google Scholar 

  3. G.J. Bendzsak and T.H. North: Trans. JWRI, 1996, vol. 25 (2), pp. 171–84.

    CAS  Google Scholar 

  4. N.N. Rykalin, A.I. Pugin, and V.A. Vasil’eva: Welding Production (translated from Russian), 1959, vol. 6, pp. 42–45.

    Google Scholar 

  5. Yu.D. Potapov, V.V. Trutnev, A. Yakushin, and A.P. Khokhabushin: Welding Production (translated from Russian), 1979, vol. 18 (2), pp. 1–3.

    Google Scholar 

  6. T. Rich and R. Roberts: Metal Construction and British Welding J., 1971, vol. 3 (3), pp. 93–98.

    Google Scholar 

  7. C.J. Cheng: Welding J., 1962, vol. 41 (12), pp. 542s-50s.

    Google Scholar 

  8. O.T. Midling and Ø. Grong: Acta Metall., 1994, vol. 42 (5), pp. 1594–609.

    Google Scholar 

  9. I.L.H. Hansson and J.K. Kristensen: Proc. Int. Conf. on Joining of Metals, O.A.K. Al-Erhayem, ed., Helsingφr, Denmark, 1984, pp. 161–67.

    Google Scholar 

  10. P.G. Bastien, J. Dollet, and Ph. Maynier: Metal Construction and British Welding J., 1970, vol. 2 (9), pp. 9–15.

    CAS  Google Scholar 

  11. Ph. Maynier, J. Dollet, and P.G. Bastien: Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, ed., Metallurgical Society of AIME, New York, NY, 1978, pp. 163–76.

    Google Scholar 

  12. Ph. Maynier, B. Jungmann, and J. Dollet: Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, ed., Metallurgical Society of AIME, New York, NY, 1978, pp. 518–44.

    Google Scholar 

  13. M.F. Ashby and K.E. Easterling: Acta Metall., 1982, vol. 30 (11), pp. 1969–78.

    Article  CAS  Google Scholar 

  14. J.C. Ion, K.E. Easterling, and M.F. Ashby: Acta Metall., 1984, vol. 32 (11), pp. 1949–62.

    Article  CAS  Google Scholar 

  15. J.S. Kirkaldy: Metall. Trans., 1973, vol. 4 (10), pp. 2327–33.

    Article  CAS  Google Scholar 

  16. J.S. Kirkaldy and R.C. Sharma: Scripta Metall., 1982, vol. 16 (10), pp. 1193–98.

    Article  CAS  Google Scholar 

  17. J.S. Kirkaldy and D. Venugopalan: Phase Transformation in Ferrous Alloys, A.R. Marder and J.I. Goldenstein, ed., Am. Inst. Min. Engrs., Philadelphia, PA, 1984, pp. 125–48.

    Google Scholar 

  18. T.C. Nguyen: M.A.Sc. Thesis, University of Waterloo, Waterloo, ON, Canada, 1997.

    Google Scholar 

  19. J. Huber: A.R.D. Industries Ltd., Cambridge, ON, Canada, private communication, 1996.

  20. G.F. Vander Voort: Metallography Principles and Practice, ASM Int’l, Materials Park, OH, 1999.

    Google Scholar 

  21. F.P. Incropera and D.P. De Witt: Fundamentals of Heat and Mass Transfer, 3rd ed., John Wiley & Sons, Toronto, ON, 1990, p. 58.

    Google Scholar 

  22. R.D. Pelhlke, A. Jeyarajan, and H. Wada: Report No. NSF/MAE-82028, NSF Applied Research Division, University of Michigan, 1982.

  23. D.F. Watt, L. Coon, M. Bibby, J. Goldak, and C. Henwood: Acta Metall., 1988, vol. 36 (11), pp. 3029–35.

    Article  CAS  Google Scholar 

  24. K.H. Huebner and E.A. Thornton: The Finite Element Method for Engineers, 2nd ed., John Wiley and Sons, New York, NY, 1982.

    Google Scholar 

  25. S.C. Chapra and R.P. Canale: Numerical Methods for Engineers, 2nd ed., McGraw-Hill, Toronto, ON, 1988, pp. 261–69.

    Google Scholar 

  26. E112-88 ASTM Standard, Annual Book of ASTM Standards, Philadelphia, PA, 1994, vol. 03.01, pp. 227–52.

  27. W.C. Leslie: The Physical Metallurgy of Steels, McGraw-Hill, New York, NY, 1981.

    Google Scholar 

  28. G.E. Linnert: Welding Metallurgy, 4th ed., American Welding Society, Miami, FL, 1994, vol. 1, p. 837.

    Google Scholar 

  29. L. Coon and D.F. Watt: Computer Modelling of Fabrication Processes and Constitutive Behaviour of Materials, J. Too, ed., Am. Inst. Min. Engrs., Philadelphia, PA, 1984, pp. 125–48.

    Google Scholar 

  30. C. Henwood, M. Bibby, J. Goldak, and D. Watt: Acta Metall., 1988, vol. 36 (11), pp. 3037–46.

    Article  CAS  Google Scholar 

  31. B. Buchmayr and J.S. Kirkaldy: J. Heat Treat., 1990, vol. 8 (2), pp. 127–36.

    CAS  Google Scholar 

  32. Atlas of Time-Temperature Diagram for Irons and Steels, G.F. Voort, ed., ASM Int’l, Material Park, OH, 1991, p. 14.

  33. I.F. Squires: British Welding J., 1966, vol. 13 (11), pp. 652–57.

    CAS  Google Scholar 

  34. H.M. Tensi, W. Welz, and M. Schwalm: Aluminium, 1982, vol. 58, pp. 515–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, T.C., Weckman, D.C. A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel. Metall Mater Trans B 37, 275–292 (2006). https://doi.org/10.1007/BF02693157

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02693157

Keywords

Navigation