Skip to main content
Log in

Numerical Simulation of the Inertia Friction Welding Process of Dissimilar Materials

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Three-dimensional axisymmetric finite element analyses have been performed to analyze the coupled thermo-mechanical oscillatory transient problem of friction welding of two dissimilar hollow cylinders. The analysis included the effect of conduction and convection heat transfer implementing three independent variables specifically the welding time, the rotational velocity, and the thrust pressure. Experimental evaluation of the non-linear copper and Aluminum 6061 stress–strain responses, the thermal conductivities, and the specific heat coefficients were conducted using an environmental-controlled compartment for at least four different temperatures. These results were incorporated in the finite element model calculating a real joint transient temperature distribution and a full field view of the residual stresses in weldment. Variables of angular rotational velocity of (200, 400, and 600 rpm), thrust pressure of (10E5, 10E6, and 10E7 Pa), and total welding time of (1, 2, and 4 seconds) were used in the model simulation. The optimum welding conditions were selected using Taguchi method. Finally, the deformation shape predicted by the finite element simulations was compared to the deformations obtained by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Ke, L.I. Xing, and J.E. Indacochea: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 153–60, DOI: 10.1007/s11663-004-0105-6.

    Article  Google Scholar 

  2. A.L. Biro, B.F. Chenelle, and D.A. Lados: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1622–37, DOI: 10.1007/s11663-012-9716-5.

    Article  Google Scholar 

  3. M. Mohammadtaheri, M. Haddad-Sabzevar, M. Mazinani, and E.B. Motlagh: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1–6, DOI: 10.1007/s11663-013-9808-x

    Google Scholar 

  4. M. Akbari, and R.A. Behnagh: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1177–86, DOI: 10.1007/s11663-012-9682-y.

    Article  Google Scholar 

  5. Y. Zhu, Y. Guo, and L. Yang: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 396–405, DOI: 10.1007/s11663-013-9795-y.

    Article  Google Scholar 

  6. S.K. Nirmal, and S.S. Vishal: Int. J. Adv. Manuf. Technol., 2011, vol. 57, pp. 957–67, DOI: 10.1007/s00170-011-3361-z.

    Article  Google Scholar 

  7. L. Fu, and L.Y. Duan: Weld. J., 1998, vol. 77, pp. 202–7.

    Google Scholar 

  8. L. Wang, M. Preuss, P.J. Withers, G. Baxter, and P. Wilson: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 513–23, DOI: 10.1007/s11663-005-0043-y.

    Article  Google Scholar 

  9. R. Turner, R.M. Ward, R. March, and R.C. Reed: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 186–97, DOI: 10.1007/s11663-011-9563-9.

    Article  Google Scholar 

  10. A. Sluzalec: Int. J. Mech. Sci., 1990, vol. 32, pp. 467–78, DOI: 10.1016/0020-7403(90)90153-A.

    Article  Google Scholar 

  11. A. Moal, and E. Massoni: Eng. Comput., 1995, vol. 12, pp. 497–512, DOI: 10.1108/02644409510799730.

    Google Scholar 

  12. M. Bellet, F. Decultieux, M. Menai, F. Bay, C. Levaillant, JL. Chenot, P. Schmidt, and L. Svensson: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 81–99, DOI: 10.1007/BF02915080.

    Article  Google Scholar 

  13. L. D’Alvise, E. Massoni, and S.J. Walløe: J. Mater. Process. Technol., 2002, vol. 125, pp. 387–91, DOI: 10.1016/S0924-0136(02)00349-7.

    Article  Google Scholar 

  14. K.I. Ahmed: Ph.D. Dissertation at Jawaharlal Nehru Technological University, 2012, http://hdl.handle.net/10603/3467.

  15. V. Balasubramanian, Y. Li, T. Stotler, J. Crompton, N. Katsube, and W. Soboyejo: Mater. Manuf. Proc., 1999, vol. 14, pp. 755–73, DOI: 10.1080/10426919908914867.

    Article  Google Scholar 

  16. C.J. Bennett, T.H. Hyde, and E.J. Williams: Proc. Inst. Mech. Eng., 2007, vol. 221, pp. 275–84, DOI: 10.1243/14644207JMDA154

    Google Scholar 

  17. The Egyptian Metallurgical Industries Company (E.Js.H.Co) at Helwan, Egypt http://www.micor.com.eg/Default.aspx. Accessed May 2013.

  18. M. El-Hadek: Int. J. Comput. Meth. Eng. Sci. Mech., 2009, vol. 10, 224–230, DOI: 10.1080/15502280902795086

    Article  Google Scholar 

  19. M.A. El-Hadek, and S. Kaytbay: Strain, 2009, vol. 45, pp. 506–15, DOI: 10.1111/j.1475-1305.2008.00552.x.

    Article  Google Scholar 

  20. S.-Y. Chang, C.-F. Chen, S.-J. Lin, and T.Z. Kattamis: Acta. Mater., 2003, vol. 51, pp. 6291–302, DOI:10.1016/S1359-6454(03)00462-2.

    Article  Google Scholar 

  21. Electrical properties, International Annealed Copper Standard by the International Electro technical Commission (IACS) in terms of the following properties at 20 °C, 1913.

  22. G. Weng: Int. J. Eng. Sci., 1984, vol. 22, pp. 845–56, DOI: 10.1016/0020-7225(84)90033-8.

    Article  Google Scholar 

  23. S. Raymond: Physics for Scientists and Engineers with Modern Physics, 3rdEd, Saunders College Publishing, Rochester, 1990

    Google Scholar 

  24. L.-I. Tong, and C.-T. Su: J. Qual. Reliab. Eng. Int., 1997, vol. 13, pp. 25–34, DOI: 10.1002/(SICI)1099-1638(199701)13:1<25::AID-QRE59>3.0.CO;2-B.

    Article  Google Scholar 

  25. J.A. Ghani, I.A. Choudhury, and H.H. Hassan: J. Mater. Process. Technol., 2004, vol. 145, pp. 84–92, DOI: 10.1016/S0924-0136(03)00865-3.

    Article  Google Scholar 

  26. L.I. Tong, C.T. Su, and C.H. Wang: Int. J. Qual. Reliab. Manag., 1997, vol. 14, pp. 367–80, DOI: 10.1108/02656719710170639.

    Article  Google Scholar 

  27. N. Logothetis, and A. Haigh: J. Qual. Reliab. Eng. Int., 1988, vol. 4, pp. 159–69, DOI: 10.1002/qre.4680040211.

    Article  Google Scholar 

  28. D. Lazarević, M. Madić, P. Janković, and A. Lazarević: J. Tribol. Ind., 2012, vol. 34 pp. 68–73, DOI: 0351-16421202068L.

    Google Scholar 

Download references

Acknowledgment

The author would like to thank the Egyptian Suez Canal Authority for their help and assistant during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhat A. El-Hadek.

Additional information

Manuscript submitted January 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hadek, M.A. Numerical Simulation of the Inertia Friction Welding Process of Dissimilar Materials. Metall Mater Trans B 45, 2346–2356 (2014). https://doi.org/10.1007/s11663-014-0148-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0148-2

Keywords

Navigation