Skip to main content
Log in

Oxidation kinetics of molten copper sulfide

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The oxidation kinetics of molten Cu2S baths, during top lancing with oxygen/nitrogen (argon) mixtures, have been investigated as a function of oxygen partial pressure (0.2 to 0.78), bath temperature (1200 °C to 1300 °C), gas flow rate (1 to 4 L/min), and bath mixing. Surface-tension-driven flows (the Marangoni effect) were observed both visually and photographically. Thus, the oxidation of molten Cu2S was found to progress in two distinct stages, the kinetics of which are limited by the mass transfer of oxygen in the gas phase to the melt surface. During the primary stage, the melt is partially desulfurized while oxygen dissolves in the liquid sulfide. Upon saturation of the melt with oxygen, the secondary stage commences in which surface and bath reactions proceed to generate copper and SO2 electrochemically. A mathematical model of the reaction kinetics has been formulated and tested against the measurements. The results of this study shed light on the process kinetics of the copper blow in a Peirce-Smith converter or Mitsubishi reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area (m2)

D A-B :

diffusion coefficient of speciesA inB (m2/s)

d :

inside diameter of the lance (m)

H :

height of the lance above the bath surface (m)

k :

mass-transfer coefficient (m/s)

M A :

molecular weight of speciesA (kg/kg mole)

m :

constant in the gas-phase mass-transfer correlation

N A :

molar quantity of speciesA

N A :

molar transfer rate of speciesA (mole/s)

n Re :

exponent on the Reynolds number

n Sc :

exponent on the Schmidt number

n s :

exponent on (d/rs)

n A :

molar flux of species A (mole/m2 · s)

O Cu :

coefficient relating the molar rate of oxygen dissolution in the metal phase to the rate of generation of the metal phase

R:

universal gas constant (8.3144 J/K · mole) (82.06 cm1 · atm/K · mole)

Re:

Reynolds number, Re=uρxd/μg

r s :

radius of reaction surface (m)

S Cu :

coefficient relating the molar rate of sulfur dissolution in the metal phase to the rate of generation of the metal phase

Sc:

Schmidt number, Sc = μgg D A-B

Sh:

Sherwood number, Sh = kgd/DA -B

T :

temperature (K)

T* :

reduced temperature (K)

t :

time (s)

u :

mean velocity inside nozzle of the lance (m/s)

W :

sample weight (kg)

W :

rate of weight change (kg/s)

x A :

mole fraction of species A

α :

the molar ratio of reacted oxygen to removed sulfur

ΔT :

change in temperature due to the exothermic reaction (°C)

ζ :

percent increase in mass transfer (likely due to the Marangoni effect)

μ g :

gas viscosity (kg/m · s) (1 g/cm · s = 1 poise = 0.1 kg/m · s)

σ :

collision diameter (Å)

Ω (2,2)* :

Lennard-Jones potential

< >:

solid substance

(()):

liquid substance

():

gaseous substance

[ ]:

in liquid or ionic solution

a :

admitted

b :

bulk (property of the material in the bulk)

f :

final (designation for the variables at the end of the secondary stage)

i :

interfacial (property of the material at the interface) or initial (designation for the variables at the beginning of reaction,t = 0)

p :

primary (primary stage variables)

s :

secondary (secondary stage variables)

*:

transition (designation for the variables at transition from the primary stage to the secondary stage)

References

  1. E.A. Peretti:Discuss. Faraday Soc, 1948, vol. 4, pp. 179–84.

    Article  Google Scholar 

  2. E.G. King, A.D. Mah, and L.B. Pankratz:The Metallurgy of Copper, INCRA Monograph II, International Copper Research Association, Inc., New York, NY, 1973.

    Google Scholar 

  3. A.A. Bustos, J.K. Brimacombe, and G.G. Richards:Metall. Trans. B, 1986, vol. 17B, pp. 677–85.

    CAS  Google Scholar 

  4. A.A. Bustos, J.K. Brimacombe, and G.G. Richards:Can. Met. Q., 1988, vol. 27, pp. 7–21.

    CAS  Google Scholar 

  5. H.H. Kellogg:Can. Met. Q., 1969, vol. 8, pp. 3–23.

    CAS  Google Scholar 

  6. A. Yazawa and T. Azakami:Can. Met. Q., 1969, vol. 8, pp. 257–61.

    CAS  Google Scholar 

  7. J. Schmiedl:Physical Chemistry of Process Metallurgy: The Richardson Conference, Institution of Mining and Metallurgy, London, 1974, pp. 127–34.

    Google Scholar 

  8. J.F. Elliott:Metall. Trans. B, 1976, vol. 7B, pp. 17–33.

    CAS  Google Scholar 

  9. J. Lumsden:Metal-Slag-Gas Reactions and Processes, The Electrochemical Society, Inc., Princeton, NJ, 1975, pp. 155–68.

    Google Scholar 

  10. T. Rosenquist:Advances in Sulphide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 239–55.

    Google Scholar 

  11. F. Ajersch and J.M. Toguri:Metall. Trans., 1972, vol. 3, pp. 2187–193.

    Article  CAS  Google Scholar 

  12. G. Rottmann and W. Wuth:Copper Metallurgy: Practice and Theory, M.J. Jones, Institution of Mining and Metallurgy, London, 1975, pp. 49–52.

    Google Scholar 

  13. H. Jalkanen:Scand. J. Metall., 1981, vol. 10, pp. 257–62.

    CAS  Google Scholar 

  14. V.A. Bryukvin, O.I. Tsybin, L.I. Blokhina, and G.N. Zviadadza: UDC 669.332: 546.221 (Moscow), 1977, p. 24.

  15. R.E. Johnson, N.J. Themelis, and G.A. Eltringham:Copper and Nickel Converters, R.E. Johnson, ed., AIME, New York, NY, 1979, pp. 1–32.

    Google Scholar 

  16. D.W. Ashman, J.W. McKelliget, and J.K. Brimacombe:Can. Metall. Q., 1981, vol. 20, pp. 387–95.

    CAS  Google Scholar 

  17. F.D. Richardson:Physical Chemistry of Melts in Metallurgy, Academic Press, Inc., New York, NY, 1974, vol. 1, pp. 61–62.

    Google Scholar 

  18. R.G. Barton and J.K. Brimacombe:Metall. Trans. B, 1977, vol. 8B, pp. 417–27.

    CAS  Google Scholar 

  19. K. Monma and H. Suto:Trans. JIM, 1961, vol. 2, pp. 148–53.

    CAS  Google Scholar 

  20. J.K. Brimacombe:Physical Chemistry of Process Metallurgy: The Richardson Conference, Institution of Mining and Metallurgy, London, 1974, pp. 175–85.

    Google Scholar 

  21. F.D. Richardson:Trans. Iron Steel Inst. Jpn., 1974, vol. 14, pp. 1–8.

    CAS  Google Scholar 

  22. R.G. Barton and J.K. Brimacombe:Metall. Trans. B, 1976, vol. 7B, pp. 144–45.

    CAS  Google Scholar 

  23. F.D. Richardson:Can. Metall. Q., 1982, vol. 21, pp. 111–19.

    CAS  Google Scholar 

  24. A.H. Alyaser: Master’s Thesis, The University of British Columbia, Vancouver pp. 42-49.

  25. S. Taniguchi, A. Kikuchi, and S. Maeda:Tetsu-to-Hagané, 1976, vol. 62 (2), pp. 191–200.

    CAS  Google Scholar 

  26. S. Taniguchi, A. Kikuchi, and S. Maeda:Tetsu-to-Hagané, 1977, vol. 63 (7), pp. 1071–80.

    CAS  Google Scholar 

  27. S. Taniguchi, A. Kikuchi, T. Tadaki, and S. Maeda:Tetsu-to-Hagané, 1979, vol. 65 (13), pp. 1830–73.

    CAS  Google Scholar 

  28. A. Kikuchi, S. Taniguchi, T. Tadaki, and S. Maeda:Metallurgical Applications of Magnetohydrodynamics, Proc. Symp. Int. Union of Theoretical and Applied Mechanics Trinity College, Cambridge, United Kingdom, 1982, H.K. Moffatt and M.R.E. Proctor, eds. The Metals Society.

  29. N.H. Chen and D.F. Othmer:J. Chem. Eng. Data, 1962, vol. 7, pp. 37–41.

    Article  Google Scholar 

  30. J.O. Hirschelder, C.F. Curtiss, and R.B. Bird:Molecular Theory of Gases and Liquids, John Wiley & Sons, Inc., New York, NY, 1954, pp. 528 and 604-05.

    Google Scholar 

  31. J. Szekely and N.J. Themelis:Rate Phenomena in Process Metallurgy, John Wiley & Sons, Inc., New York, NY, 1971, pp. 14–16.

    Google Scholar 

  32. R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley & Sons, Inc., New York, NY, 1960, pp. 15–29.

    Google Scholar 

  33. M. Goto, M. Hayashi, and S. Okabe:Proc. Int. Symp. on the Impact of Oxygen on the Productivity of Non-Ferrous Metallurgy Processes, G. Kachaniwsky and C. Newman, eds., vol. 2, 1987, CIM, Montreal, pp. 31–48.

    Google Scholar 

  34. H.H. Kellog and C. Diaz:Proc. Savard/Lee Int. Symp. on Bath Smelting, J.K. Brimacombe, P.J. Mackey, G.J.W. Kor, C. Bickert, and M.G. Ranade eds., TMS, Warrendale, PA, 1992, pp. 39–65.

    Google Scholar 

  35. A. Yazawa:Can. Metall. Q., 1974, vol. 13, pp. 443–53.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alyaser, A.H., Brimacombe, J.K. Oxidation kinetics of molten copper sulfide. Metall Mater Trans B 26, 25–40 (1995). https://doi.org/10.1007/BF02648974

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02648974

Keywords

Navigation