Skip to main content
Log in

Oxidation of hydrogen sulfide and corrosion of stainless steel in gas mixtures containing H2S, O2, H2O, and CO2

  • Published:
Journal of Engineering Thermophysics Aims and scope

Abstract

The composition of volatile and solid products of oxidation of hydrogen sulfide and stainless steel in gas mixtures containing H2S, O2, H2O, and CO2 has been determined using mass spectrometry, x-ray diffraction analysis, and scanning electron microscopy. It has been shown that holding an H2S–O2 mixture at 301 K results in prevailing formation of elemental sulfur and iron sulfides in the form of porous hygroscopic crust on the reactor wall surface. Formation of gas-phase sulfur causes self-acceleration of the oxidation of hydrogen sulfide; the resulting water triggers corrosion of the reactor wall. Heating of the resulting sulfur-sulfide crust in O2 medium is accompanied by formation of SO2 and heat release at T > 508 K. After heating of the H2S–CO2 mixture to 615 K, H2 and COS were found in the volatile reactants; no noticeable corrosion of the reactor wall has been detected. It has been established that addition of O2 to the H2S–CO2 mixture and its heating to 673 K leads to formation of ferrous sulfates. The mechanisms of the observed processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Selim, H., Gupta, A.K., and Al Shoabi, A., Effect of Reaction Parameters on the Quality of Captured Sulfur in Claus Process, Appl. En., 2013, vol. 104, pp. 772–776.

    Article  Google Scholar 

  2. Babich, I.V. and Moulijn, J.A., Science and Technology of Novel Process for Deep Desulfurization of Oil Refinery Streams: A Review, Fuel, 2003, vol. 82, pp. 607–631.

    Article  Google Scholar 

  3. Corsi, R., Scaling and Corrosion in Geothermal Equipment: Problems and Preventive Measures, Geothermic, 1986, vol. 15, nos. 5/6, pp. 839–856.

    Article  Google Scholar 

  4. Barbier, E., Geothermal Energy Technology and Current Status: An Overview, Ren. Sust. En. Rev., 2002, vol. 6, nos. 1/2, pp. 3–65.

    Article  Google Scholar 

  5. Ouali, S., Chader, S., Belhamel, M., and Benziada, M., The Exploitation of Hydrogen Sulfide for Hydrogen Production in Geothermal Areas, Int. J. Hydr. En., 2011, vol. 36, pp. 4103–4109.

    Article  Google Scholar 

  6. Reddy, E.L., Biju, V.M., and Subrahmanyam, C., Hydrogen Production from Hydrogen Sulfide in a Packed-Bed DBD Reactor, Int. J. Hydr. En., 2012, vol. 37, pp. 8217–8222.

    Article  Google Scholar 

  7. Fedyaeva, O.N., Antipenko, V.R., Dubov, D.Yu., Kruglyakova, T.V., and Vostrikov, A.A., Non-Isothermal Conversion of the Kashpir Sulfur-Rich Oil Shale in a Supercritical Water Flow, J. Supercrit. Fluids, 2016, vol. 109, pp. 157–165.

    Article  Google Scholar 

  8. Fedyaeva, O.N., Vostrikov, A.A., Shishkin, A.V., Sokol, M.Y., Fedorova, N.I., and Kashirtsev, V.A., Hydrothermolysis of Brown Coal in Cyclic Pressurization–Depressurization Mode, J. Supercrit. Fluids, 2012, vol. 62, pp. 155–164.

    Article  Google Scholar 

  9. Vostrikov, A.A., Dubov, D.Yu., Sokol, M.Ya., Shishkin, A.V., and Fedyaeva, O.N., Brown Coal Gasification in Combustion in Supercritical Water, J. Eng. Therm., 2016, vol. 25, no. 1, pp. 55–66.

    Article  Google Scholar 

  10. Vostrikov, A.A., Fedyaeva, O.N., and Kolobov, V.I., Conversion of Tar in Supercritical Water/Oxygen Fluid with Soot Suppression, J. Eng. Therm., 2017, vol. 26, no. 1, pp. 1–9.

    Article  Google Scholar 

  11. Fedyaeva, O.N., Antipenko, V.R., and Vostrikov, A.A., Conversion of Sulfur-Rich Asphaltite in Supercritical Water and Effect ofMetal Additives, J. Supercrit. Fluids, 2014, vol. 88, pp. 105–116.

    Article  Google Scholar 

  12. Fedyaeva, O.N. and Vostrikov, A.A., The Products of Heavy Sulfur-Rich Oil Conversion in a Counter Supercritical Water Flow and Their Desulfurization by ZnO Nanoparticles, J. Supercrit. Fluids, 2016, vol. 111, pp. 121–128.

    Article  Google Scholar 

  13. Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Dubov, D.Yu., and Sokol, M.Ya., Conversion of Municipal Sewage Sludge in Supercritical Water, Solid Fuel Chem., 2008, vol. 42, no. 6, pp. 384–393.

    Article  Google Scholar 

  14. Fedyaeva, O.N., Vostrikov, A.A., Sokol, M.Ya., and Shatrova, A.V., Zinc Sulfidation by H2S and H2S/H2O Supercritical Fluids: Synthesis of Nanoparticles and Catalytic Effect of Water, J. Supercrit. Fluids, 2014, vol. 95, pp. 669–676.

    Article  Google Scholar 

  15. Tsay, L.W., Lin, Y.J., and Chen, C., The Effect of Rolling Temperature and Sensitization Treatment on the Sulfide Stress Corrosion Cracking of 304L Stainless Steel, Corr. Sci., 2012, vol. 63, pp. 267–274.

    Article  Google Scholar 

  16. Ning, J., Zheng, Y., Young, D., Brown, B., and Nesic, S., A Thermodynamic Study of Hydrogen Sulfide Corrosion of Mild Steel, Proc. NACE Int. Conf. on Corrosion, 2013, Paper no. 2462.

    Google Scholar 

  17. Bai, P., Zhao, H., Zheng, S., and Chen, C., Initiation and Development Stages of Steel Corrosion in Wet H2S Environments, Corr. Sci., 2015, vol. 93, pp. 109–119.

    Article  Google Scholar 

  18. Xu, S., Huang, S., Guo, D., Zhao, Y., and Song, M., Failure Analysis of a Carbon Steel Pipeline to Wet Hydrogen Sulfide Environment, Eng. Failure An., 2017, vol. 71, pp. 1–10.

    Article  Google Scholar 

  19. Bai, P., Zheng, S., Zhao, H., Ding, Y., Wu, J., and Chen, C., Investigations of theDiverseCorrosionProducts on Steel in a Hydrogen Sulfide Environment, Corr. Sci., 2014, vol. 87, pp. 397–406.

    Article  Google Scholar 

  20. Zhao, W., Zou, Y., Matsuda, K., and Zou, Z., Corrosion Behavior of Reheated CGHAZof X80 Pipelines Steel in H2S-Containing Environments, Mat. Des., 2016, vol. 99, pp. 44–56.

    Google Scholar 

  21. Fatah, M.C., Ismail, M.C., Ari-Wahjoedi, B., and Kurnia, K.A., Effect of Sulfide Ion on the Corrosion Behavior of X52 Steel in a Carbon Dioxide Environment at Temperature 40 C, Mater. Chem. Phys., 2011, vol. 127, pp. 347–352.

    Article  Google Scholar 

  22. Wang, P., Wang, J., Zheng, S., Qi, Y., Xiong, M., and Zheng, Y., Effect of H2S/CO2 Partial Pressure Ratio on the Tensile Properties of X80 Pipeline Steel, Int. J. Hydr. En., 2015, vol. 40, pp. 11925–11930.

    Article  Google Scholar 

  23. Ming, Q., Jianfeng, L., Songying, C., and Yanpeng, Q., Experimental Study on Stress Corrosion Crack Propagation Rate of FV520B in Carbon Dioxide and Hydrogen Sulfide Solution, Res. Phys., 2016, vol. 6, pp. 365–372.

    Google Scholar 

  24. Sun, J., Sun C., Zhang, G., Li, X., Zhao, W., Jiang, T., Liu, H., Cheng, X., and Wang, Y., Effect of O2 and H2S Impurities on the Corrosion Behavior of X65 Steel inWater-Saturated Supercritical CO2 System, Corr. Sci., 2016, vol. 107, pp. 31–40.

    Article  Google Scholar 

  25. Fedyaeva, O.N. and Vostrikov, A.A., Transformations of Pyrite and Pyrrhotite in Supercritical Water, Supercrit. Fluids: Theory Pract., 2016, vol. 11, no. 2, pp. 28–38.

    Google Scholar 

  26. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv: spravochnik (Constants of Inorganic Substances: Handbook), Moscow: Drofa, 2006.

    Google Scholar 

  27. Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., Sokol, M.Ya., Kolobov, F.I., and Kolobov, V.I., Partial and CompleteMethane Oxidation in Supercritical Water, J. Eng. Therm., 2016, vol. 25, no. 4, pp. 474–484.

    Article  Google Scholar 

  28. Lemmon, E.W., McLinden, M.O., and Freid, D.G., Thermophysical Properties of Fluid Systems. NIST Chemistry WebBook, NIST Standard Reference Database no. 69, Linstrom, P.J. and Mallard, W.G., Eds., Gaithersburg MD: National Institute of Standards and Technology, 2016, 20899; http://webbook.nist.gov/chemistry/fluid/.

  29. Powder Diffraction File, PDF-4+, Rel. 2012, http://www.icdd.com/products/pdf14.htm.

  30. Ampornrat, P. and Was, G.S., Oxidation of Ferric-Martensitic Alloys T91, HCM12A and HT-9 in Supercritical Water, J. Nucl. Mater., 2007, vol. 371, pp. 1–17.

    Article  ADS  Google Scholar 

  31. U.S. Coast Guard, Chemical Hazard Response Information System (CHRIS)-Hazardous Chemical Data, Commandant Instruction 16465.12C. Washington, D.C.: U.S. Government Printing Office, 1999. http://www.uscg.mil/directives/cim/16000-16999/CIM_16465_12C.pdf.

  32. Rhodes, C., Riddel, S.A., West, J., Williams, B.P., and Hutchings, G.J., The Low-Temperature Hydrolysis of Carbonyl Sulfide and Carbon Disulfide: A Review, Catal. Today, 2000, vol. 59, nos. 2/3, pp. 443–464.

    Article  Google Scholar 

  33. NIST Mass Spectrometry Data Center, 2016, http://webbok.nist.gov/chemistry/form-ser.html.

  34. Shaw, S.C., Groat, L.A., Jambor, J.L., Blowes, D.W., Hanton-Fong, C.J., and Stuparyk, R.A., Mineralogical Study of Base Metal Tailings with Various Sulfide Contents, Oxidized in Laboratory Columns and Field Lysimeters, Envir. Geol., 1998, vol. 33, nos. 2/3, pp. 209–217.

    Article  Google Scholar 

  35. Steger, H.F., Oxidation of Sulfide Minerals: VII. Effect of Temperature and Relative Humidity on the Oxidation of Pyrrhotite, Chem. Geol., 1982, vol. 35, nos. 3/4, pp. 281–295.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vostrikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V. et al. Oxidation of hydrogen sulfide and corrosion of stainless steel in gas mixtures containing H2S, O2, H2O, and CO2 . J. Engin. Thermophys. 26, 314–324 (2017). https://doi.org/10.1134/S181023281703002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181023281703002X

Navigation