Skip to main content
Log in

Hydrodynamic modes in a gas of magnons

  • Published:
Physik der kondensierten Materie

Abstract

Density waves analogous to second sound are studied in a gas of magnons. Quasiparticle interaction is considered for both equilibrium and non equilibrium thermodynamics. The non equilibrium theory is based on a Boltzmann equation for magnon-magnon scattering. Contrary to the total energy and magnetization, (quasi)-momentum is not strictly conserved. In the hydrodynamic regime, the transport equation is reduced to a set of two coupled equations for the magnetization and the local temperature. For low temperatures these have diffusive and propagating solutions while for high temperatures, where momentum is dissipated by Umklapp processes, the solutions are only diffusive. The magnetization response function and the corresponding spectral function are discussed for various wavenumbers and temperatures.

Zusammenfassung

Hydrodynamische Anregungen in einem Gas von Magnonen, insbesondere zweiter Schall, werden theoretisch untersucht. Die Landau-Quasiteilchen-Wechselwirkung wird systematisch berücksichtigt. Im hydrodynamischen Regime erhält man zwei gekoppelte Gleichungen für die Magnetisierung und für die lokale Temperatur. Bei tiefer Temperatur hat das System diffusive und propagierende Lösungen, bei hoher Temperatur nur diffusive Lösungen.

Résumé

On étudie les excitations hydrodynamiques, en particulier le deuxième son, pour un gaz de magnons. L'interaction de Landau entre quasiparticules est traitée d'une façon systématique. Dans le régime hydrodynamique on obtient deux équations couplées pour la magnétisation et la température locale. A basse température le système possède des solutions diffusives et des solutions oscillantes, à haute température seulement les solutions diffusives subsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurzhi, R. N.: Fiz. tverdogo. Tela7, 3515 (1965). (Engl. transl.: Soviet Physics.-Solid State7, 2838 (1966).)

    Google Scholar 

  2. Gulayev, Yu. V.: Zh. eksp. i teor. Fiz., Prisma v. Redakt.2, 3 (1965). (Engl. transl.: Soviet Physics. JETP Letters2, 1 (1965).)

    ADS  Google Scholar 

  3. Reiter, G. F.: Phys. Rev.175, 631 (1968).

    Article  ADS  Google Scholar 

  4. Grad, H.: In: Handbuch der Physik. Vol. XII, p. 205. Ed.: S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1958. — Waldmann, L.: Ibidem, p. 364.

    Google Scholar 

  5. Akhiezer, A. I., Bar'yakhtar, V. G., Peletminskii, S. V.: Spinovie Volni. Mockva: Isdat. Nauka, 1967 (Engl. transl.: Spin. Waves. Amsterdam: North Holland Publishing Co. 1968).

    Google Scholar 

  6. Prohofsky, E. W., Krumhansl, J. A.: Phys. Rev.133, A 1403 (1964).

    Article  ADS  Google Scholar 

  7. Landau, L. D., Lifschitz, E. M.: Statistische Physik. Berlin: Akademie-Verlag 1966.

    Google Scholar 

  8. Holstein, T., Primakoff, H.: Phys. Rev.58, 1098 (1940).

    Article  ADS  Google Scholar 

  9. Dyson, F. J.: Phys. Rev.102, 1217 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  10. Landau, L. D.: Zh. eksp. teor. Fiz.30, 1058 (1956). (Engl. transl.: Soviet Physics JETP3, 920 (1956);32, 59 (1957).) (Engl. transl.: Soviet Physics JETP5, 101 (1957).)

    Google Scholar 

  11. Morita, T., Tanaka, T.: Phys. Rev.138, A 1403 (1965); J. Math. Phys.6, 1152 (1965).

    ADS  MathSciNet  Google Scholar 

  12. Wortis, M.: Phys. Rev.132, 85 (1963). — Hanus, J. G.: Phys. Rev. Letters11, 336 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  13. Götze, W., Michel, K. H.: Phys. Rev.156, 963 (1967).

    Article  ADS  Google Scholar 

  14. Pines, D., Nozières, P.: The Theory of Quantum Liquids. New York: W. A. Benjamin, Inc. 1966.

    Google Scholar 

  15. Mori, H.: Progr. theor. Phys. (Kyoto)33, 423 (1965) and in: Tokyo Summer Lectures. Vol. 1, p. 17. Ed.: R. Kubo. New York: W. A. Benjamin, Inc. 1966.

    Article  ADS  MATH  Google Scholar 

  16. Kawasaki, K.: Progr. theor. Phys. (Kyoto)39, 1133 (1968). — Wegner, F.: Z. Phys.216, 433 (1968). — Schofield, P.: Phys. Letters26A, 489 (1968).

    Article  ADS  Google Scholar 

  17. Schwabl, F., Michel, K. H.: Phys. Rev. July (1970)

  18. Kadanoff, L. P., Martin, P. C.: Ann. Phys. (N.Y.)24, 419 (1963).

    Article  MathSciNet  Google Scholar 

  19. Kubo, R.: J. Phys. Soc. Jap.12, 570 (1957).

    Article  MATH  MathSciNet  Google Scholar 

  20. Zubarev, D. N.: Usp. Fiz. Nauk71, 71 (1960). (Engl. transl.: Soviet Phys. Usp.3, 320 (1960).)

    MathSciNet  Google Scholar 

  21. Martin, P. C.: In: Statistical mechanics of equilibrium and non-equilibrium. Ed.: J. Meixner. Amsterdam: North-Holland 1965.

    Google Scholar 

  22. van Hove, L.: Phys. Rev.95, 1374 (1954). — de Gennes, P. G.: In: Magnetism. Vol. 3. Eds.: G. T. Rado and H. Suhl. New York: Academic Press 1963, p. 115.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, K.H., Schwabl, F. Hydrodynamic modes in a gas of magnons. Phys kondens Materie 11, 144–162 (1970). https://doi.org/10.1007/BF02422482

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02422482

Keywords

Navigation