Skip to main content
Log in

A model for compound action potentials and currents in a nerve bundle I: The forward calculation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We describe a model for the Compound Action Currents (CACs) and Compound Action Potentials (CAPs) produced by a peripheral nerve bundlein vitro. The Single Fiber Action Currents (SFACs) and the extracellular Single Fiber Action Potentials (SFAPs) are calculated using a generalized volume conduction model. Frequency-dependent conductivities, variations in the intracellular action potentials with recording temperature and axon conduction velocity, and the effects of axonal myelination are incorporated into the volume conduction calculation. We demonstrate how the propagation distance and the recording radius affect the simulated Compound Action Signals (CASs) of various nerve bundles. We also demonstrate how the frequency-dependent and-independent conductivities affect the CASs simulated by our model. For this simulation, some of the parameters for the nerve bundles and Conduction Velocity Distributions (CVDs) were obtained from the literature. In accompanying papers, we use the simulated CASs to investigate the effects of variations in the model parameters on the CVDs predicted by our inverse model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

φ i (ρ,z):

intracellular potential (mV)

φ e (ρ,z):

potential in the saline bath (mV)

φ s (ρ,θ,z):

sheath potential (mV)

φ b (ρ,θ,z):

bundle potential (mV)

φ m (z):

transmembrane potential (mV)

φ i (ρ,k):

Fourier transform of the intracellular potential (mV·k)

φ e (k):

Fourier transform of the potential in the saline bath (mV·k)

φ m (k):

Fourier transform of the transmembrane potential (mV·k)

k :

spatial frequency (1/mm)

t :

time (ms)

a :

axon radius (mm)

p :

volume fraction

ρ:

recording radius (mm)

ν:

conduction velocity of the action potential (m/sec)

σ i :

intracellular conductivity of the axon in the nerve bunde (Ω−1m−1)

σ e :

extracellular conductivity of the saline bath (Ω−1m−1)

σ s :

conductivity of the sheath around the nerve bundle (Ω−1m−1)

σ z :

axial conductivity of the nerve bundle (Ω−1m−1)

σ ρ :

radial conductivity of the nerve bundle (Ω−1m−1)

b :

radius of the nerve bundle (mm)

δ:

thickness of the sheath around the nerve bundle (mm)

s :

distance of the axon from the center of the nerve bundle (mm)

\(\bar s\) :

mean distance between center of bundle and center of axon (mm)

A :

cross sectional area of the bundle (mm2)

d * :

internal diameter of the nerve fiber (μm)

τ j :

time delay between the stimulus time and the arrival time at the recording site of thejth nerve fiber (msec)

D :

external diameter of the nerve fiber (μm)

Z m :

membrane impedance times unit area (Ωm2)

λ:

length constant (mm)

B :

magnetic field (pT)

c :

inner radius of the toroid (mm)

d :

outer radius of the toroid (mm)

e :

width of the toroid (mm)

ρ eff :

effective toroid radius (mm)

Γ:

circumference of the circle with radius ρ eff

ω:

temporal angular frequency (1/s)

T :

temperature (°C)

l :

the propagation distance of the action signal (mm)

N :

number of active fibers in the nerve bundle

Υ:

delay of SFAS due to activation time and virtual cathode effect (msec)

l n :

internodal distance (mm)

Ј:

current density (A/m2)

Iin :

total current passing through the toroid (A)

L n :

length of the node of Ranvier (μm)

C N :

capacitance of the node of Ranvier (F)

C m :

effective membrane capacitance per unit area (F/m2)

R N :

resistance of the node of Ranvier (Ω)

R m :

effective resistance times unit area (Ωm2)

R sh :

resistance of the sheath (Ω)

C sh :

capacitance of the sheath (F)

Q 10 :

temperature coefficient

ATD:

arrival time distribution

CAC:

compound action current (μA)

CAP:

compound action potential (μV)

CAS:

compound action signal (μA or μV)

CVD:

conduction velocity distribution

FDH:

fiber diameter histogram

FFT:

fast Fourier transform

NNLS:

nonnegative least squares

SFAC:

single fiber action current (μA)

SFAP:

single fiber action potential (μV)

SFAS:

single fiber action signal (μA or μV)

References

  1. Barach, J.P.; Freeman, J.A.; Wikswo, J.P. Experiments on the magnetic field of nerve action potentials. J. Appl. Physiol. 51:4532–4538; 1980.

    Google Scholar 

  2. Barach, J.P.; Roth, B.J.; Wikswo, J.P. Magnetic measurements of action currents in a single nerve axon: A core-conductor model. IEEE Trans. Biomed. Eng. BME-32 2:136–140; 1985.

    Google Scholar 

  3. Barker, A.T.; Brown, B.H.; Freeston, I.L. Modeling of an active nerve fiber in a finite volume conductor and its application to the calculation of surface action potentials. IEEE Trans. Biomed. Eng. BME-26:53–56; 1979a.

    CAS  Google Scholar 

  4. Barker, A.T.; Brown, B.H.; Freeston, I.L. Determination of the distribution of conduction velocities in human nerve trunks. IEEE Trans. Biomed. Eng. 26:76–81; 1979b.

    CAS  PubMed  Google Scholar 

  5. Bishop, G.H.; Heinbecker, P. Differentiation of axon types of visceral nerves by means of the potential record. Amer. J. Physiol. 94:170–198; 1930.

    Google Scholar 

  6. Blair, E.A.; Erlanger, J. A comparison of the characteristics of axons through their individual electrical response. Amer. J. Physiol. 106:524–556; 1933.

    Google Scholar 

  7. Buchthal, F.; Rosenfalck, A. Evoked action potentials and conduction velocity in human sensory nerves. Brain Res. 3:1–122; 1966.

    Article  Google Scholar 

  8. Buchthal, F.; Rosenfalck, A. Sensory potentials in polyneuropathy. Brain Res. 94:241–262; 1971.

    CAS  Google Scholar 

  9. Clark, J.W.; Plonsey, R. A mathematical evaluation of the core conduction model. Biophys. J. 6:95–112; 1966.

    CAS  PubMed  Google Scholar 

  10. Clark, J.W.; Plonsey, R. The extracellular potential of the single active nerve fiber in a volume conductor. Biophys. J. 8:842–864; 1968.

    CAS  PubMed  Google Scholar 

  11. Clark, J.W.; Plonsey, R. A mathematical study of nerve fiber interaction. Biophys. J. 8:842–864; 1968.

    CAS  PubMed  Google Scholar 

  12. Cummins, K.L.; Perkel, D.H.; Dorfman, L.J. Nerve conduction velocity distributions. I. Estimation based on the single-fiber and compound action potentials. Electroenceph. Clin. Neurophysiol. 46:634–646; 1979a.

    CAS  PubMed  Google Scholar 

  13. Cummins, K.L.; Dorfman, L.J.; Perkel, D.H. Nerve conduction velocity distributions. II. Estimation based on two compound action potentials. Electroenceph. Clin. Neurophysiol. 46:647–658; 1979b.

    CAS  PubMed  Google Scholar 

  14. de Jesus, P.V.; Hausmanowa-Petrusewiez, I.; Barchi, R.L. The effect of cold on nerve conduction of human slow and fast nerve fibers. Neurology (Minneap). 23:1182–1189; 1973.

    Google Scholar 

  15. de Nó, R.L. A study of nerve physiology. Studies from the Rockefeller Inst. for Med. Res. 132:348–477; 1947.

    Google Scholar 

  16. Dyck, P.J.; Thomas, P.K.; Lambert, E.H.; Bunge, R. Peripheral neuropathy. Philadelphia: W.B. Saunders Company; 1984.

    Google Scholar 

  17. Erlanger, J.; Bishop, G.H.; Gasser, H.S. Experimental analysis of the simple action potential wave in nerve by the cathode ray oscillograph. Amer. J. Physiol. 78:537–573; 1926.

    Google Scholar 

  18. Erlanger, J.; Gasser, H.S. The action potential in fibers of slow conduction spinal roots and somatic nerves. Amer. J. Physiol. 92:43–59; 1930.

    Google Scholar 

  19. Erlanger, J.; Gasser, H.S. Electrical signs of nervous activity. London: Oxford Univ. Press; 1937.

    Google Scholar 

  20. Erlanger, J.; Gasser, H.S.; Bishop, G.H. The compound nature of the action current of nerve as disclosed by the cathode ray oscillograph. Amer. J. Physiol. 70:624–666; 1924.

    Google Scholar 

  21. Erne, S.N.; Curio, G.; Trahms, L.; Trontelj, Z.; Aust, P. Proc. 6th International Conference on Biomagnetism 166–169; 1987.

  22. Gasser, H.S.; Erlanger, J. A study of the action currents of nerve with the cathode ray oscillograph. Amer. J. Physiol. 58:497–524; 1922a.

    Google Scholar 

  23. Gasser, H.S.; Erlanger, J. The components of action currents obtained from nerves. Amer. J. Physiol. 59:417–418; 1922b.

    Google Scholar 

  24. Gasser, H.S.; Erlanger, J. The role played by the sizes of the constituent fibers of the nerve trunk in determining the form of its action potential wave. Amer. J. Physiol. 80:522–545; 1927.

    Google Scholar 

  25. Gasser, H.S.; Grundfest, H. Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Amer. J. Physiol. 127:393–414; 1939.

    Google Scholar 

  26. Gielen, F.L.H.; Roth, B.J.; Wikswo, Jr., J.P. Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans. Biomed. Eng. BME-33 10:910–921; 1986a.

    Google Scholar 

  27. Gielen, F.L.H.; Cruts, H.E.P.; Alberts, B.A.; Boon, K.L.; Wallinga de Jonge, W.; Boom, H.B.K. Model of electrical conductivity of skeletal muscle based on tissue structure. Med. and Biol. Eng. and Comput. 24:34–40; 1986b.

    CAS  Google Scholar 

  28. Gielen, F.L.H.; Roth, B.J.; Wikswo, J.P.; Brink, P. Action current propagation across an electric synapse: Magnetic measurements on a septated earthworm axon. (abst) Biophys. J. 49:340a; 1986c.

    Google Scholar 

  29. Helmholtz, H. Messungen uber den zeitlichenn Verlauf der Zuchung animalischer Muskeln und die Fortpflanzungsqeschwindigkeit der Reizung in den Nerven. Arch. Anat. Physiol. 276–364; 1850.

  30. Heringa, A.; Stegeman, D.F.; Uijen, G.J.H.; De Weerd, J.P.C. Solution methods of electrical field problems in physiology. IEEE Trans. Biomed. Eng. BME-29:34–42; 1982.

    CAS  Google Scholar 

  31. Hutchinson, N.A.; Koles, Z.J.; Smith, R.S. Conduction velocity in myelinated nerve fibers ofXenopus Laevis. J. Physiol. 208:279–289; 1970.

    CAS  PubMed  Google Scholar 

  32. Jackson, J. Classical electrodynamics. New York: Wiley; 1975.

    Google Scholar 

  33. Landau, W.M.; Clare, M.H.; Bishop, G.H. Reconstruction of myelinated nerve track action potentials: an arithmetic method. Exp. Neurol. 22:480–490; 1968.

    Article  CAS  PubMed  Google Scholar 

  34. Leifer, M.C.; Wikswo, Jr., J.P. Optimization of a clip-on SQUID current probe. Rev. Sci. Instrum. 54(8):1017–1022; 1983.

    Article  Google Scholar 

  35. Moore, J.W.; Joyner, R.W.; Brill, M.N.; Waxman, M.H.; Najar-Ioa, M. Simulations of conduction in myelinated fibers: Relative sensitivity to changes in nodal and internodal parameters. Biophys. J. 21:147–160; 1978.

    CAS  PubMed  Google Scholar 

  36. Olson, W.H.; BeMent, S.L. Compound action potential reconstructions and predicted fiber diameter distributions. In: Dorfman, L.J.; Cummins, K.L.; Leifer, L.J., eds. Conduction velocity distributions: A population approach to electrophysiology of nerve. New York: Alan R. Liss, Inc.; 1981.

    Google Scholar 

  37. Paintal, A.S. Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibers of the cat. J. Physiol. (Lond) 180:20–49; 1965.

    CAS  Google Scholar 

  38. Paintal, A.S. The influence of diameter of medullated nerve fibers of cats on the rising and falling phase of the spike and its recovery. J. Physiol. (Lond) 184:791–811; 1966.

    CAS  Google Scholar 

  39. Plonsey, R. Bioelectric phenomena. New York: McGraw-Hill; 1969.

    Google Scholar 

  40. Rosenfalck, P. Intra- and extracellular potential fields of active nerve and muscle fibers. Acta. Physiol. Scand. Suppl. 321:1–168; 1969.

    CAS  Google Scholar 

  41. Roth, B.J.; Wikswo, Jr., J.P. The electric potential and the magnetic field of an axon in a nerve bundle. Math. Biosci. 76:37–57; 1985a.

    Article  Google Scholar 

  42. Roth, B.J.; Wikswo, Jr., J.P. The magnetic field of a single axon. Biophysical J. 48:93–109; 1985b.

    CAS  Google Scholar 

  43. Roth, B.J.; Gielen, F.L.H.; Wikswo, Jr., J.P. Spatial and temporal frequency dependent conductivities in volume conduction calculations of skeletal muscle. Math. Biosci. 88:159–189; 1988.

    Google Scholar 

  44. Rushton, W.A.H. A theory of the effects of fibre size in medullated nerve. J. Physiol. (Lond) 115:101–122; 1951.

    CAS  Google Scholar 

  45. Schoonhoven, R.; Stegeman, D.F.; De Weerd, J.P.C. The forward problem in electroneurography I: A generalized volume conduction model. IEEE Trans. Biomed. Eng. BME-33:327–334; 1986.

    CAS  Google Scholar 

  46. Schoonhoven, R.; Stegeman, D.F.; Oosterom, A.V.; Dautzenberg, G.F.M. The inverse problem in electroneurography I: Conceptual basis and mathematical formulation. IEEE Trans. Biomed. Eng. BME-35:769–777; 1988.

    CAS  Google Scholar 

  47. Stampfli, R. In: Waxman, S.G.; Ritchie, J.M., eds. Demyelinating disease, Basic clinical electrophysiology. New York: Raven; 1981.

    Google Scholar 

  48. Stegeman, D.F.; De Weerd, J.P.C.; Eijkman, E.G.J. A volume conductor study of compound action potential study of nervesin situ: The forward problem. Biol. Cybern. 33:97–111; 1979.

    Article  CAS  PubMed  Google Scholar 

  49. Stegeman, D.F.; De Weerd, J.P.C. Modelling compound action potentials of peripheral nervesin situ. I Model description; evidence for a non-linear relation between fibre diameter and velocity. Electroenceph. Clin. Neurophysiol. 54:436–448; 1982.

    CAS  Google Scholar 

  50. Swinney, K.; Wikswo, J.P. A calculation of the magnetic field of a nerve action potential. Biophys. J. 32:719–732; 1980.

    CAS  PubMed  Google Scholar 

  51. Tasaki, I.; Frank, K. Measurement of the action potential of myelinated nerve fibre. Amer. J. Physiol. 182:572–578; 1955.

    CAS  PubMed  Google Scholar 

  52. Tasaki, I.; Fujita, M. Action current of single nerve fibers as modified by temperature changes. J. Neurophysiol. 182:311–315; 1948.

    Google Scholar 

  53. Weerasuriya, A.; Spangler, R.; Rapoport, S.; Taylor, R. AC impedance of the perineurium of the frog sciatic nerve. Biophys. J. 46:167–174; 1984.

    CAS  PubMed  Google Scholar 

  54. Wiederholt, W.C. Threshold and conduction velocity in isolated mixed mammalian nerves. Neurology 20:347–352; 1970.

    CAS  PubMed  Google Scholar 

  55. Wijesinghe, R.S. Comparison of electric and magnetic techniques for the determination of conduction velocity distributions of nerve bundles. Vanderbilt Univ.; 1988. PhD Thesis.

  56. Wijesinghe, R.S.; Wikswo, Jr., J.P. A model for compound action potentials and currents in a nerve bundle II: A sensitivity analysis of model parameters for the forward and inverse calculations. Ann. Biomed. Eng. 19:73–96.

  57. Wijesinghe, R.S.; Gielen, F.L.H.; Wikswo, Jr., J.P. A model for compound action potentials and currents in a nerve bundle III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann. Biomed. Eng. 19:97–121.

  58. Wikswo, Jr. J.P.; Barach, J.P.; Freeman, J.A. Magnetic field of a nerve impulse: First measurements. Science 208:53–55; 1980.

    CAS  PubMed  Google Scholar 

  59. Wikswo, Jr. J.P.; Barach, J.P.; Gunderson, S.C.; Palmer, J.O.; Freeman, J.A. Magnetic measurement of action currents in an isolated lobster axon. Il Nuovo Cimento 2D:368–378; 1983a.

    Google Scholar 

  60. Wikswo, Jr., J.P.; Samson, P.C.; Giffard, R.P. A low-noise low input impedance amplifier for magnetic measurements of nerve action currents. IEEE Trans. Biomed. Eng. BME-30:215–221; 1983b.

    Google Scholar 

  61. Wikswo, Jr., J.P.; Abraham, G.S.; Hentz, V.R. Magnetic assessment of regeneration across a nerve graft. In: Weinberg, H.; Stronik, G.; Katila, K., eds. Biomagnetism application and theory. New York: Pergamon Press; 1985a.

    Google Scholar 

  62. Wikswo, Jr., J.P.; Henry, W.P.; Samson, P.C.; Giffard, R.P. A current probe for measuring cellular action currents. In: Weinberg, H.; Stronik, G.; Katila, K., eds. Biomagnetism application and theory. New York: Pergamon Press; 1985b.

    Google Scholar 

  63. Wikswo, Jr., J.P.; Friedman, R.N.; Kilroy, A.W.; van Egeraat, J.M.; Buchanan, D.S. Preliminary measurements with MicroSQUID. In: Williamson, S.J., ed. Advances in biomagnetism. New York: Pergamon Press, 681–684; 1989.

    Google Scholar 

  64. Sepulveda, N.G.; Roth, B.J.; Wikswo, Jr., J.P. Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55:987–999; 1989.

    CAS  PubMed  Google Scholar 

  65. Wilson, O.W.; Clark, J.W.; Ganapathy, N.; Harman, T.L. Potential field from an active nerve in an inhomogeneous, anisotropic volume conductor—the forward problem. IEEE Trans. Biomed. Eng. BME-32:1032–1041; 1985.

    Google Scholar 

  66. Woosley, J.K.; Roth, B.J.; Wikswo, Jr., J.P. The magnetic field of a single axon: A volume conductor model. Math. Biosci. 76:1–36; 1985.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijesinghe, R.S., Gielen, F.L.H. & Wikswo, J.P. A model for compound action potentials and currents in a nerve bundle I: The forward calculation. Ann Biomed Eng 19, 43–72 (1991). https://doi.org/10.1007/BF02368460

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368460

Keywords

Navigation