Skip to main content
Log in

Functional elements and domains inferred from sequence comparisons of a heat shock gene in two nematodes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Caenorhabditis elegans andCaenorhabditis briggsae are two closely related nematode species that are nearly identical morphologically. Interspecific cross-hybridizing DNA appears to be restricted primarily to coding regions. We compared portions of thehsp-3 homologs two grp 78-like genes, fromC. elegans andC. briggsae and detected regions of DNA identity in the coding region, the 5′ flanking DNAs, and the introns. Thehsp-3 homologs share approximately 98% and 93% identity at the amino acid and nucleotide levels, respectively. Using the nucleotide substitution rate at the silent third position of the codons, we have estimated a lower limit for the date of divergence betweenC. elegans andC. briggsae to be approximately 23–32 million years ago. The 5′ flanking DNAs and one of the introns contain elements that are highly conserved betweenC. elegans andC. briggsae. Some of the regions of nucleotide identity in the 5′ flanking DNAs correspond to previously detected identities including viral enhancer sequences, a heat shock element, and an element present in the regulatory regions of mammalian grp78 and grp94 genes. We propose that a comparison ofC. elegans andC. briggsae sequences will be useful in the detection of potential regulatory and structural elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural feature of theDrosophila hsp82 gene. J Mol Biol 188:499–515

    Article  PubMed  Google Scholar 

  • Blumenthal T, Thomas J (1988)Cis andtrans mRNA splicing inC. elegans. Trens Genet 4:305–308

    Article  Google Scholar 

  • Blumenthal T, Zucker-Aprison E (1987) Evolution and regulation of vitellogenin genes. In: O'Connor JD (ed) Molecular biology of invertebrate development. Liss, New York, pp 3–19

    Google Scholar 

  • Bodmer M, Ashburner M (1984) Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species ofDrosophila. Nature 309:425–430.

    PubMed  Google Scholar 

  • Busslinger M, Rusconi S, Birnsteil ML (1982) An unusual evolutionary behaviour of a sea urchin histone gene cluster. EMBO J 1:27–33

    Google Scholar 

  • Cabot EL, Beckenbach AT (1989) Simultaneous editing of multiple nucleic acids and protein sequences with ESEE. Comput Applic Biosci 5:233–234

    Google Scholar 

  • Chang C, Meyerowitz EM (1986) Molecular cloning and DNA sequence of theArabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci USA 83:1408–1412

    PubMed  Google Scholar 

  • Chang SC, Wooden SK, Nakaki T, Kim YK, Lin AY Kung L, Attenello J, Lee AS (1987) Rat gene encoding the 78 kDa glucose regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc Natl Acad Sci USA 84:680–684

    PubMed  Google Scholar 

  • Coulson A, Sulston J, Brenner S, Karn J (1986) Towards a physical map of the genome of the nematodeCaenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Google Scholar 

  • Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y (1988) Genome linking with yeast artificial chromosomes. Nature 335:184–186

    Article  PubMed  Google Scholar 

  • Edgley ML, Riddle DL (1987)Caenorhabditis elegans. In: O'Brien SJ (ed) Genetic maps 1987, vol 4. Cold Spring Harbor Laboratory, Cold Spring Harbor NY, pp 351–365

    Google Scholar 

  • Emmons SW, Klass MR, Hirsh D (1979) Analysis of the constancy of DNA sequences during development and evolution of the nematodeC. elegans. Proc Natl Acad Sci USA 76: 1333–1337

    PubMed  Google Scholar 

  • Fire A (1986) Integrative transformation, ofCaenorhabditis elegans. EMBO J 5:2673–2680

    Google Scholar 

  • Hattori M, Sakaki Y (1986) Dideoxy sequencing method using denatured templates. Anal Biochem 152:232–238

    Article  PubMed  Google Scholar 

  • Hearing P, Shenk T (1983) The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 33:695–703

    Article  PubMed  Google Scholar 

  • Heine U, Blumenthal T (1986) Characterization of regions of theCaenorhabditis elegans X chromosome containing vitellogenin genes. J Mol Biol 188:301–312

    Article  PubMed  Google Scholar 

  • Henikoff S (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol 155:156–165

    PubMed  Google Scholar 

  • Henikoff S, Eghtedarzadeh MK (1987) Conserved arrangement of nested genes at theDrosophila Gart locus. Genetics 117: 711–725

    PubMed  Google Scholar 

  • Heschl MFP, Baillie DL (1987) Characterization of the hsp70 multigene family ofCaenorhabditis elegans. DNA 8:233–243

    Google Scholar 

  • Klass M, Ammons D, Ward S (1988) Conservation in the 5′ flanking sequences of transcribed members of theCaenorhabditis elegans major sperm protein gene family. J Mol Biol 199: 15–22

    Article  PubMed  Google Scholar 

  • Klein-Hitpass L, Schorpp M, Wagner U, Ryffel GU (1986) An estrogen-responsive element derived from the 5′ flanking region of theXenopus vitellogenin A2 gene functions in transfected human cells. Cell 46:1053–1061

    Article  PubMed  Google Scholar 

  • Lee AS (1987) Coordinated regulation of a set of genes b glucose and calcium ionophores in mammalian cells. Trends Biochem Sci 12:20–23

    Article  Google Scholar 

  • Li W-H, Luo C-C, Wu C-I (1985a). Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94

    Google Scholar 

  • Li W-H, Wu C-I, Luo C-C (1985b) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor NY

    Google Scholar 

  • Martin CH, Mayeda CA, Meyerowitz EM (1988) Evolution and expression of theSgs-3 glue gene ofDrosophila. J Mol Biol 201:273–287

    Article  PubMed  Google Scholar 

  • Mierendorf RC, Pfeffer D (1987) Direct sequencing of denatured plasmid DNA. Methods Enzymol 152:556–562

    PubMed  Google Scholar 

  • Nigon V, Dougherty EC (1949) Reproductive patterns and attempts at reciprocal crossing ofRhabditis elegans Maupas 1900, andRhabditis briggsae Dougherty and Nigon. J Exp Zool 112:485–503

    Article  PubMed  Google Scholar 

  • Ochman H, Wilson AC (1987) Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol 26:74–86

    PubMed  Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promoter element in theDrosophila hsp70 heat-shock gene. Cell 30:517–528

    Article  PubMed  Google Scholar 

  • Pelham HRB (1985) Activation of heat shock genes in eukaryotes. Trends Genet 1:31–35

    Article  Google Scholar 

  • Prasad SS, Baillie DL (1989) Evolutionarily conserved coding sequences in thedpy-20-unc-22 region ofCaenorhabditis elegans. Genomics 5:185–198

    Article  PubMed  Google Scholar 

  • Resendez E Jr, Wooden SK, Lee AS (1988) Identification of highly conserved regulatory domains and protein binding sites in the promoters of the rat and human gene encoding the stress-inducible 78-kDa glucose-regulated protein. Mol Cell Biol 8:4579–4584

    PubMed  Google Scholar 

  • Snutch TP (1984) Molecular and genetic analysis of the heat shock response ofCaenorhabditis elegans. PhD thesis, Simon Fraser University, Burnaby, British Columbia

    Google Scholar 

  • Snutch TP, Heschl MFP, Baillie DL (1988) TheCaenorhabditis elegans hsp70 gene family: a molecular genetic characterization. Gene 64:241–255

    Article  PubMed  Google Scholar 

  • Sulston JE, Horvitz HR (1977) Post-embryonic cell lineages of the nematodeCaenorhabditis elegans. Dev Biol 56:110–156

    Article  PubMed  Google Scholar 

  • Sulston JE, Schierenberg E, White JG, Thomson JN (1983) The embryonic cell lineage of the nematodeCaenorhabditis elegans. Dev Biol 100:64–119

    Article  PubMed  Google Scholar 

  • Weiher H, Konig M, Gruss P (1983) Multiple point mutations affecting the simian virus 40 enhancer. Science 217:626–631

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heschl, M.F.P., Baillie, D.L. Functional elements and domains inferred from sequence comparisons of a heat shock gene in two nematodes. J Mol Evol 31, 3–9 (1990). https://doi.org/10.1007/BF02101786

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101786

Key words

Navigation