Skip to main content

Genome Mapping and Genomics of Caenorhabditis elegans

  • Chapter
  • First Online:
Genome Mapping and Genomics in Laboratory Animals

Part of the book series: Genome Mapping and Genomics in Animals ((MAPPANIMAL,volume 4))

  • 966 Accesses

Abstract

The nematode Caenorhabditis elegans is one of the most extensively studied and utilized model organisms, owing to experimental advantages such as its ease of culture and rapid growth, facile genetics, cellular simplicity, and complete transparency throughout life. Its compact 100 Mb genome sequence was the first to be completely determined for any multicellular organism, in 1998. Early linkage mapping by recombinational methods and cytology defined a nuclear genome of five autosomes and one X (sex) chromosome, of roughly equal size. The two natural sexes are both autosomally diploid; hermaphrodites have two X chromosomes (XX) while males have one (XO). All chromosomes are holocentric, but each contains a central region where recombination is reduced and conserved house-keeping genes are more frequent. Centromeres and extended heterochromatic regions are absent. Telomeres are conventional. Annotation of the genome has defined over 20,000 protein-coding genes, with relatively few pseudogenes. About 15 % of these genes are transcribed as multicistronic operons, which are divided up into mRNAs by trans-splicing. The genome also contains many noncoding RNA genes, including a well-defined set of miRNAs. Families of transposons and repeated sequences are present but less abundant than in vertebrates. Postgenomic approaches include extensive resequencing, transcriptomics, microarray analyses and proteomics, together with determination of spatial and temporal gene expression patterns using GFP reporter transgenes, and functional testing by systematic gene deletion and global RNAi knockdown screens. Protein–protein interactions have been explored by large-scale yeast two-hybrid testing. Genome sequences for several other species within the genus Caenorhabditis have been determined; these provide a major resource for comparative genomics, and reveal a high degree of synteny between the different species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnes TM, Kohara Y, Coulson A, Hekimi S (1995) Meiotic recombination, noncoding DNA and genomic organization in Caenorhabditis elegans. Genetics 141:159–179

    PubMed  CAS  Google Scholar 

  • Barstead RJ, Moerman DG (2006) C. elegans deletion mutant screening. Methods Mol Biol 351:51–58

    PubMed  CAS  Google Scholar 

  • Bessereau JL (2006) Transposons in C. elegans. In: WormBook. http://www.wormbook.org

  • Blumenthal T (2005) Trans-splicing and operons. In: WormBook. http://www.wormbook.org

  • Blumenthal T et al (2002) A global analysis of Caenorhabditis elegans operons. Nature 417:851–854

    Article  PubMed  CAS  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  • Chu DS, Liu H, Nix P, Wu TF, Ralston EJ, Yates JR 3rd, Meyer BJ (2006) Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 443:101–115

    Article  PubMed  CAS  Google Scholar 

  • Coulson A, Sulston J, Brenner S, Karn J (1986) Toward a physical map of the genome of the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 83:7821–7825

    Article  PubMed  CAS  Google Scholar 

  • Coulson A, Waterston R, Kiff J, Sulston J, Kohara Y (1988) Genome linking with yeast artificial chromosomes. Nature 335:184–186

    Article  PubMed  CAS  Google Scholar 

  • Dolgin ES, FĂ©lix MA, Cutter AD (2007) Hakuna Nematoda: genetic and phenotypic diversity in African isolates of Caenorhabditis elegans and C. briggsae. Heredity 100:304–315

    Google Scholar 

  • Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A, Carvunis AR, Pulak R, Shingles J, Reece-Hoyes J, Hunt-Newbury R, Viveiros R, Mohler WA, Tasan M, Roth FP, Le Peuch C, Hope IA, Johnsen R, Moerman DG, Barabási AL, Baillie D, Vidal M (2007) Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25:663–668

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Frokjaer-Jensen C, Davis MW, Hollopeter G, Taylor J, Harris TW, Nix P, Lofgren R, Prestgard-Duke M, Bastiani M, Moerman DG, Jorgensen EM (2010) Targeted gene deletions in C. elegans using transposon excision. Nat Methods 7:451–453

    Article  PubMed  CAS  Google Scholar 

  • Hillier LW, Miller RD, Baird SE, Chinwalla A, Fulton LA, Koboldt DC, Waterston RH (2007) Comparison of C. elegans and C. briggsae genome sequences reveals extensive conservation of chromosome organization and synteny. PLoS Biol 5:e167

    Article  PubMed  Google Scholar 

  • Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A, McKay S, Okada HM, Pan J, Schulz AK, Tu D, Wong K, Zhao Z, Alexeyenko A, Burglin T, Sonnhammer E, Schnabel R, Jones SJ, Marra MA, Baillie DL, Moerman DG (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237

    Article  PubMed  Google Scholar 

  • Jones SJM, Riddle DL, Pouzyrev AT, Velculescu VE, Hillier L, Eddy SR, Stricklin SL, Baillie DL, Waterston R, Marra MA (2001) Changes in gene expression associated with developmental arrest and longevity in Caenorhabditis elegans. Genome Res 11:1346–1352

    Article  PubMed  CAS  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2002) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  Google Scholar 

  • Kim SK, Lund J, Kiraly M, Duke K, Jiang M, Stuart JM, Eizinger A, Wylie BN, Davidson GS (2001) A gene expression map for Caenorhabditis elegans. Science 293:2087–2092

    Article  PubMed  CAS  Google Scholar 

  • Kiontke K, Fitch DH (2005) The phylogenetic relationships of Caenorhabditis and other rhabditids. In: WormBook. http://www.wormbook.org

  • Lee I, Lehner B, Crombie C, Wong W, Fraser AG, Marcotte EM (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40:181–188

    Article  PubMed  CAS  Google Scholar 

  • Li S et al (2004) A map of the interactome network of the metazoan C. elegans. Science 303:540–543

    Article  PubMed  CAS  Google Scholar 

  • Luan CH, Qiu S, Finley JB, Carson M, Gray RJ, Huang W, Johnson D, Tsao J, Reboul J, Vaglio P, Hill DE, Vidal M, DeLucas LJ, Luo M (2004) High-throughput expression of C. elegans proteins. Genome Res 14:2102–2110

    Article  PubMed  CAS  Google Scholar 

  • Maydan JS, Flibotte S, Edgley ML, Lau J, Selzer RR, Richmond TA, Pofahl NJ, Thomas JH, Moerman DG (2007) Efficient high-resolution deletion discovery in Caenorhabditis elegans by array comparative genomic hybridization. Genome Res 17:337–347

    Article  PubMed  CAS  Google Scholar 

  • Motohashi T, Tabara H, Kohara Y (2006) Protocols for large scale in situ hybridization on C. elegans larvae. In: WormBook. http://www.wormbook.org

  • Mounsey A, Bauer P, Hope IA (2002) Evidence suggesting that a fifth of annotated Caenorhabditis elegans genes may be pseudogenes. Genome Res 12:770–775

    PubMed  CAS  Google Scholar 

  • O’Rourke D, Baban D, Demidova M, Mott R, Hodgkin J (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16:1005–1016

    Article  PubMed  Google Scholar 

  • Piano F, Gunsalus KC, Hill DE, Vidal M (2006) C. elegans network biology: a beginning. In: WormBook. http://www.wormbook.org

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  PubMed  CAS  Google Scholar 

  • Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127:1193–1207

    Article  PubMed  CAS  Google Scholar 

  • Sanford C, Perry MD (2001) Asymmetrically distributed oligonucleotide repeats in the Caenorhabditis elegans genome sequence that map to regions important for meiotic chromosome segregation. Nucleic Acids Res 29:2920–29266

    Article  PubMed  CAS  Google Scholar 

  • Schwarz EM (2005) Genomic classification of protein-coding gene families. In: WormBook. http://www.wormbook.org

  • Stein LD et al (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:166–192

    Article  CAS  Google Scholar 

  • Stewart MK, Clark NL, Merrihew G, Galloway EM, Thomas JH (2006) High genetic diversity in the chemoreceptor superfamily of Caenorhabditis elegans. Genetics 169:1985–1996

    Article  Google Scholar 

  • Timmons L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  PubMed  CAS  Google Scholar 

  • Vella MC, Slack FJ (2005) C. elegans microRNAs. In: WormBook. http://www.wormbook.org

  • Zhang Y, Ma C, Delohery T, Nasipak B, Foat BC, Bounoutas A, Bussemaker HJ, Kim SK, Chalfie M (2002) Identification of genes expressed in C. elegans touch receptor neurons. Nature 418:331–335

    Article  PubMed  CAS  Google Scholar 

  • Zhong W, Sternberg PW (2006) Genome-wide prediction of C. elegans genetic interactions. Science 311:1481–1484

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Hodgkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hodgkin, J., Paulini, M., Tuli, M.A. (2012). Genome Mapping and Genomics of Caenorhabditis elegans . In: Denny, P., Kole, C. (eds) Genome Mapping and Genomics in Laboratory Animals. Genome Mapping and Genomics in Animals, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31316-5_2

Download citation

Publish with us

Policies and ethics