Skip to main content
Log in

Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns

  • Multi-Author Reviews
  • Biology of Halophilic Bacteria, Part I
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Marine salterns are habitats for a large variety of halophilic bacteria. In the anoxic zones, halophilic sulfur bacteria develop mainly at the sediment surface, but only a few of them have so far been isolated from such environments. Among the phototrophic sulfur bacteria that sometimes form purple layers underneath the green cyanobacterial layers, members of the generaEctothiodhodospira, Chromatium (C. salexigens), Thiocapsa (T. halophila) were isolated. They grow by using sulfide as an electron donor. In the marine salterns, sulfide originates from active sulfate reduction. Among the halophilic sulfate-reducing bacteria, onlyDesulfovibrio halophilus andDesulfohalobium retbaense have so far been isolated. The ecology and physiology of both kinds of bacteria are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Beer-Romero, P., and Gest, H.,Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing Bacteriochlorophyll g. FEMS Microbiol. Lett.41 (1987) 109–114.

    Article  CAS  Google Scholar 

  2. Castenholz, R., Composition of hot spring microbial mats: a summary, in: Microbial Mats: Stromatolites, pp. 101–119. Eds Y. Cohen, R. W. Castenholz and H. O. Halvorson. Alan R. Liss, Inc., New York 1984.

    Google Scholar 

  3. Caumette, P., Phototrophic sulfur bacteria and sulfate reducing bacteria causing red waters in a shallow brackish lagoon (Prevost Lagoon, France). FEMS Microbiol.-Ecol.38 (1986) 113–124.

    CAS  Google Scholar 

  4. Caumette, P., Ecology and general physiology of phototrophic bacteria in benthic environments, in: Microbial Mats, pp. 283–304. Eds Y. Cohen and E. Rosenberg. ASM Publications, Washington 1989.

    Google Scholar 

  5. Caumette, P., Bacterial communities in coastal lagoons. An overview. Vie Milieu42 (1992) 109–121.

    Google Scholar 

  6. Caumette, P., Baulaigue, R., and Matheron, R., Characterization ofChromatium salexigens sp. nov., a halophilic Chromatiaceae isolated from mediterranean salinas. Syst. appl. Microbiol.10 (1988) 284–292.

    Article  Google Scholar 

  7. Caumette, P., Baulaigue, R., and Matheron, R.,Thiocapsa halophila sp. nov., a new halophilic phototrophic purple sulfur bacterium. Arch. Microbiol.155 (1991) 170–176.

    Article  Google Scholar 

  8. Caumett, P., Cohen, Y., and Matheron, R., Isolation and characterization ofDesulfovibrio halophilus sp. nov., a halophilic sulfate-reducing bacterium isolated from Solar Lake (Sinai). Syst. appl. Microbiol.13 (1991) 33–38.

    Article  Google Scholar 

  9. Caumette, P., Raymond, N., Relexans, J. C., and Matheron, R., Halophilic microbial mats in the saltern of Salin-de-Giraud (Camargue, France). FEMS Microbiol.-Ecol. (1993) in press.

  10. Cord-Ruwish, R., Kleinitz, W., and Widdel, F., Sulfate reducting bacteria and their economic activities. Soc. Petrol. Eng.13554 (1987) 55–58.

    Google Scholar 

  11. Cornée, A., Sur les bactéries des saumures et des sédiments des marais salants méditerranéens, in: Documents du Greco, vol. 52. Laboratoire de Géologie du Muséum, Paris 1983.

    Google Scholar 

  12. Dilling, W., and Cypionka, H., Aerobic respiration in sulfatereducing bacteria. FEM Microbiol. Lett.71 (1990) 123–128.

    CAS  Google Scholar 

  13. Fenchel, T., and Straarup, B. T., Vertical distribution of photosynthetic pigments and the penetration of light in marine sediments. Oikos22 (1971) 172–182.

    Article  CAS  Google Scholar 

  14. Fründ, C., and Cohen, Y., Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. environ. Microbiol.58 (1992) 70–77.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Giani, D., Seeler, J., Giani, L., and Krumbein, W., Microbial mats and physicochemistry in a saltern in the Bretagne (France) and in a laboratory scale saltern model. FEMS Microbiol-Ecol.62 (1989) 151–162.

    Article  CAS  Google Scholar 

  16. Giovannoni, S. J., Revsbech, N. P., Ward, D. M., and Castenholz, R. W., Obligately phototrophicChloroflexus: primary production in anaerobic hot spring mats. Arch. Microbiol.147 (1987) 80–87.

    Article  CAS  Google Scholar 

  17. Imhoff, J. F., Reassignment of the genusEctothiorhodospira Pelsh 1936 to a new family,Extothiorhodospiraceae, fam. nov., and amended description of theChromatiaceae Bavemdamm 1924. Int. J. syst. Bact.34 (1984) 338–339.

    Article  Google Scholar 

  18. Imhoff, J. F., and Trüper, H. G.,Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol.114 (1977) 115–121.

    Article  CAS  Google Scholar 

  19. Imhoff, J. F., and Trüper, H. G.,Ectothiorhodospira abdelmalekii, sp. nov., a new halophilic and alkalophilic phototrophic bacterium. Zentralbl. Bakteriol. Mikrobiol. Hyg. At. 1 Orig. Reihe C, (1981) 228–234.

    Google Scholar 

  20. Jorgensen, B. B., The sulfur cycle of a coastal marine sediment. Limnol. Oceanogr.22 (1977) 814–832.

    Article  Google Scholar 

  21. Jorgensen, B. B., Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Phil. Trans. R. Soc. London Ser. B298 (1982) 543–561.

    Article  CAS  Google Scholar 

  22. Jorgensen, B. B., Cohen, Y., and Des Marais, D., Photosynthetic action spectra and adaptation to spectral light distribution in a benthic cyanobacterial mat. Appl. environ. Microbiol.53 (1987) 879–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jorgensen, B. B., and Des Marais, D., Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiol.-Ecol.38 (1986) 179–186.

    Article  CAS  PubMed  Google Scholar 

  24. Jorgensen, B. B., Kuenen, J. G., and Cohen, Y., Microbial transformations of sulfur compounds in a stratified lake (Solar lake, Sinai). Limnol. Oceanogr.24 (1979) 799–822.

    Article  Google Scholar 

  25. Klug, M., Boston, P., Fromars, R., Gyure, R., Javor, B., Tribble, G., and Vairavermurty, A., Sulfur reduction in sediments of marine and evaporite environments, in: The Global Sulfur Cycle, pp. 128–157. Ed. D. Sagan. NASA Technical memorandum 87570, NASA 1985.

  26. Le Rudulier, D., and Bouillard, L., Glycine betaine, an osmotic effector inKlebsiella pneumoniae and other members of the Enterobacteriaceae. Appl. environ. Microbiol.46 (1983) 152–159.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nissembaum, A., and Kaplan, I. R., Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea ecosystem, in: Environmental Biogeochemistry, vol. 1, pp. 309–325. Ed. J. O. Nriagu. Ann Arbor Sciences Publishers, Michigan 1976.

    Google Scholar 

  28. Nissen, H., and Dundas, I. D.,Rhodospirillum salinarum, sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch. Microbiol.138 (1984) 251–256.

    Article  CAS  Google Scholar 

  29. Ollivier, B., Hatchikian, C. E., Prensier, G., Guezennec, J., and Garcia, J. L.,Desulfohalobium retbaense gen. nov. sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int. J. syst. Bact.41 (1991) 74–81.

    Article  CAS  Google Scholar 

  30. Oren, A., Anaerobic degradation of organic compounds at high salt concentrations. Antonie van Leuvwenhoek54 (1988) 267–277.

    Article  CAS  Google Scholar 

  31. Oren, A., Kessel, M., and Stackebrandt, E.,Ectothiorhodospira marismortui sp. nov., an obligately anaerobic moderately halophilic purple sulfur bacterium from a hypersaline sulfur spring on the shore of the Dead Sea. Arch. Microbiol.151 (1989) 524–529.

    Article  CAS  Google Scholar 

  32. Oren, A., Paster, B. J., and Woese, C. R., Haloanaerobiaceae: a new family of moderately halophic obligatory anaerobic bacteria. Syst. appl. Microbiol.5 (1984) 71–80.

    Article  CAS  Google Scholar 

  33. Overmann, J., Fischer, U., and Pfennig, N., A new purple sulfur bacterium from saline littoral sediments,Thiorhodovibrio winogradskyi gen. nov. and spec. nov. Arch. Microbiol.157 (1992) 329–335.

    Article  CAS  Google Scholar 

  34. Peters, P., Galinski, E. A., and Trüper, H., The biosynthesis of Ectoine. FEMS Microbiol. Lett.71 (1990) 157–162.

    Article  CAS  Google Scholar 

  35. Pfennig, N., and Trüper, H. G., Isolation of members of the families Chromatiaceae and Chlorobiaceae, in: The Prokaryotes, pp. 279–239. Eds P. M. Starr, H. Stolp, H. G. Trüper, A. Balows and H. G. Schlegel. Springer-Verlag KG, Berlin 1981.

    Chapter  Google Scholar 

  36. Pfennig, N., and Trüper, H. G., Anoxygenic phototrophic bacteria, in: Bergery's Manual of Systematic Bacteriology, pp. 1635–1709. Eds J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Hol, Williams and Wilkins, Baltimore 1989.

    Google Scholar 

  37. Revsbech, N. P., Christensen, P. B., Nielsen, L. P., Microelectrode analysis of photosynthetic and respiratory processes in microbial mats, in: Microbial Mats, pp. 153–162. Eds Y. Cohen and E. Rosenberg. ASM, Washington 1989.

    Google Scholar 

  38. Schmidt, K., Biosynthesis of carotenoids, in: The Photosynthetic Bacteria, pp. 729–750. Eds R. K. Clayton and W. R. Sistrom. Plenum Publishing Corp, New York 1978.

    Google Scholar 

  39. Trüper, H. G., Bacterial sulfate reduction in the Red Sea hot brines, in: Hot Brines and Heavy Metal Deposits in the Red Sea, pp. 263–271. Eds E. T. Degens and D. A. Ross. Springer Verlag, New York 1969.

    Chapter  Google Scholar 

  40. Trüper, H. G., and Galinski, E. A., Concentrated brines as habitats for micro-organisms. Experentia42 (1986) 1181–1187.

    Google Scholar 

  41. Widdel, F., Microbiology and ecology of sulfate and sulfur reducing bacteria, in: Environmental Physiology off Anaerobes, pp. 469–584. Ed. A. J. B. Zehner. John Wiley & Sons, Inc., New York 1988.

    Google Scholar 

  42. Widdel, F., and Bak, F. Gram-negative mesophilic sulfatereducing bacteria, in: The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed, Vol. IV, pp. 3352–3378. Eds A. Ballows, H. G. Trüper, M. Dworkin, W. Harder, and K. H. Schleifer. Springer Verlag, New York 1992.

    Google Scholar 

  43. Widdel, F., and Hansen, T., The dissimilatory sulfate and sulfur-reducing bacteria, in: The Prokaryotes 2nd ed. vol. 1 pp. 583–624. Eds A. Balows, H. G. Trüper, M. Dworkin, W. Harder and K. H. Schleifer. Springer Verlag, New York 1992.

    Google Scholar 

  44. Widdel, F., and Pfennig, N., Dissimilatory sulfate or sulfur reducing bacteria, in: Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 663–679. Eds N. R. Krieg and J. G. Holt. The Williams & Wilkins Co., Baltimore 1984.

    Google Scholar 

  45. Woese, C. R., Kandler, O., and Wheelis, M. L., Towards a natural system of organisms proposal for the domainsArchae, Bacteria andEucarya. Proc. natl Acad. Sci. USA87 (1990) 4576–4579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeikus, J. G., Metabolic communication between biodegradative populations in nature, in: Microbes in their Natural Environments, pp. 423–462. Eds J. H. Slater, R. Whittenbury, and J. W. T. Whimpenny, S. G. M. Cambridge University Press, Cambridge 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caumette, P. Ecology and physiology of phototrophic bacteria and sulfate-reducing bacteria in marine salterns. Experientia 49, 473–481 (1993). https://doi.org/10.1007/BF01955148

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01955148

Key words

Navigation