Skip to main content
Log in

Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts

Verbesserung der Wärmeübertragung und des Druckverlustes von viskosen Flüssigkeitsströmungen in isothermen Rohren mit Spiralband-Einsatz

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

Heat transfer enhancement in viscous liquid flows by means of twisted-tape inserts has been investigated in this study. Internal flows in horizontal tubes with uniform wall temperature have been considered. This is representative of typical conditions encountered in practical applications in the chemical and process industry. Experimental data were obtained for water and ehtylene glycol with snug-fit tape inserts of three different twist ratios,y=3.0, 4.5, and 6.0; the tape thickness in each case was 0.483 mm. The data cover a wide range of flow parameters: 3.5<Pr<100, and 300<Re<35,000, for both heating and cooling conditions. The results forNu m andf are strongly influenced by the tape geometry and fluid flow conditions, and can be functionally represented byNu m=φ(Re, Pr, μ bw,L/d, H/d, δ/d) andf=φ(Re, H/d, δ/d).

Zusammenfassung

In dieser Untersuchung wurde die Verbesserung des Wärmeübergangs in viskosen Flüssigkeitsströmungen mittels eines Spiralband-Einsatzes erforscht. Es wurden Strömungen in horizontalen Rohren mit einheitlicher Wandtemperatur betrachtet. Diese sind repräsentativ für typische Bedingungen, die in praktischen Anwendungen in der chemischen und weiterverarbeitenden Industrie anzutreffen sind. Für Wasser und Äthylen-Glykol wurden experimentelle Daten für eingepaßte Band-Einsätze mit drei unterschiedlichen Verdrehungsverhältnisseny=3.0, 4.5 und 6.0 erhalten; die Breite des Bandes betrug jeweils 0.483 mm. Die Daten decken einen weiten Bereich von Strömungsparametern ab: 3.5<Pr<100 und 300<Re<35,000 für die beiden Betriebsbedingungen Heizen und Kühlen. Die Ergebnisse fürNu m undf sind stark abhängig von der Bandgeometrie und den Strömungsbedingungen und können zweckmäßig durchNu m=φ(Re, Pr, μ bw,L/d, H/d, δ/d) undf=φ(Re, H/d, δ/d) dargestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

heat transfer area, m2

c p :

specific heat at constant pressure, J/kg·K

d :

tube inside diameter, m

d h :

hydraulic diameter, m

f :

Fanning friction factor

h :

mean heat transfer coefficient, W/m2·K

H :

180° twist pitch, m

k :

fluid thermal conductivity, W/m · K

L :

heated length, m

\(\dot m\) :

mass flow rate, kg/s

Nu :

Nusselt number based on inside diameter,h d/k

Pr :

Prandtl number,μ c p/k

q :

heat transfer rate, W

Re :

Reynolds number based on empty tube diameter, 4006D-0307;/π dμ

T :

fluid temperature, °C or K

ΔT m :

log-mean temperature difference, K

U :

overall heat transfer coefficient, W/m2·K

UHF:

uniform axial heat flux with constant peripheral wall temperature

UWT:

constant axial and peripheral wall temperature

y :

twist ratio,H/d

δ :

thickness of twisted tape, m

μ :

fluid dynamic viscosity, kg/m·s

ϱ :

fluid density, kg/m3

b :

at bulk fluid temperature

h :

based on hydraulic diameter

i :

at duct inlet; tube inside surface

m :

mean or average

o :

at duct outlet; tube outside surface

s :

shellside flow conditions

t :

tubeside flow conditions

w :

tube wall

References

  1. Bergles, A. E.: Techniques to augment heat transfer, in: Handbook of Heat Transfer Applications (eds. Rohsenow, W. M.; Hartnett, J. P.; Ganić, E. J.) 2nd Edition. New York: McGraw-Hill (1985), Ch. 3

    Google Scholar 

  2. Manglik, R. M.; Bergles, A. E.; Joshi, S. D.: Augmentation of heat transfer to laminar flow of non-Newtonian fluids in uniformly heated tubes with twisted-tape. Inserts, in: Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1988 (eds. Shah, R. K., Ganić, E. J.; Yang, K. T.). New York: Elsevier Science (1988) pp. 676–684

    Google Scholar 

  3. Hong, S. W.; Bergles, A. E.: Augmentation of laminar flow heat transfer in tubes by means of twisted-tape inserts. J. Heat Transfer 98 (1976) 251–256

    Google Scholar 

  4. Manglik, R. M.: Heat transfer enhancement of intube flows in process heat exchangers by means of twisted-tape inserts. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY, September 1991

    Google Scholar 

  5. Date, A. W.; Singham, J. R.: Numerical prediction of friction and heat transfer characteristics of fully developed laminar flow in tubes containing twisted tapes. ASME Paper No. 72-HT-17, 1972

  6. Date, A. W.: Prediction of fully-developed flow in a tube containing a twisted-tape. Int. J. Heat Mass Transfer 17 (1974) 845–859

    Google Scholar 

  7. Sukhatme, S. P.; Gaitonde, U. N.; Shidore, C. S.; Kuncolienkar, R. S.: Forced convection heat transfer to a viscous liquid in laminar flow in a tube with a twisted tape, in: Proc. 9th National Heat and Mass Transfer Conf Paper No. HMT 7-87, Bangalore, India, 1987

  8. Marner, W. J.; Bergles, A. E.: Augmentation of tubeside laminar flow heat transfer by means of twisted-tape inserts, static-mixer inserts, and internally finned tubes. In: Heat Transfer 1978. Washington: Hemisphere (1978) 583–588

    Google Scholar 

  9. Marner, W. J.; Bergles, A. E.: Augmentation of highly viscous laminar heat transfer inside tubes with constant temperature. Exp. Thermal Fluid Sci. 2 (1989) 252–267

    Google Scholar 

  10. Manglik, R. M.; Bergles, A. E.: A correlation for laminar flow enhanced heat transfer in uniform wall temperature circular tubes with twisted-tape inserts, in: Advances in Enhanced Heat Transfer — 1987, HTD — Vol. 68. New York: ASME (1987) 19–25

    Google Scholar 

  11. DuPlessis, J. P.; Kröger, D. G.: Friction factor prediction for fully developed laminar twisted-tape flow. Int. J. Heat Mass Transfer 27 (1984) 2095–2100

    Google Scholar 

  12. DuPlessis, J. P.; Kröger, D. G.: Heat transfer correlation for thermally developing laminar flow in a smooth tube with a twisted-tape insert. Int. J. Heat Mass Transfer 30 (1987) 509–515

    Google Scholar 

  13. Lecjaks, Z.; Machač, I.; Šir, J.: Druckverlust bei der Strömung einer Flüssigkeit durch ein Rohr mit Schraubeneinbauten. Chem. Eng. Proc. 18 (1984) 67–72

    Google Scholar 

  14. Lecjaks, Z.; Machač, I.; Šir, J.: Wärmeübertragung bei der Strömung Newton'scher Flüssigkeiten in Rohren mit Schraubeneinheiten. Chem. Eng. Proc. 18 (1984) 129–136

    Google Scholar 

  15. Ibragimov, M. H.; Nomofelov, E. V.; Subbotin, V. I.: Heat transfer and hydraulic resistance with swirl-type motion of liquid in pipes. Teploenergetika 8 (1961) 57–60

    Google Scholar 

  16. Gambill, W. R.; Bundy, R. D.: High-flux heat transfer characteristics of pure ethylene glycol in axial swirl flow. AIChE J. 9 (1963) 55–59

    Google Scholar 

  17. Lopina, R. F.; Bergles, A. E.: Heat transfer and pressured drop in tape generated swirl flow of single-phase water. J. Heat Transfer 91 (1969) 434–442

    Google Scholar 

  18. Brevi, R.; Cumo, M.; Palmieri, A.; Pitimada, D.: Forced convection heat transfer and burn-out measurements with twisted tapes. La Termotecnica 25 (1971) 619–625

    Google Scholar 

  19. Smithberg, E.; Landis, F.: Friction and forced convection heat transfer characteristics in tubes with twisted tape swirl generators. J. Heat Transfer 86 (1964) 39–49

    Google Scholar 

  20. Klaczak, A.: Analysis of the operation of exchanger tubes with internal axial helical screw generator of swirl. Rev. Gen. Therm. 10 (1971) 341–351

    Google Scholar 

  21. Marner, W. J.; Bergles, A. E.; Chenoweth, J. M.: On the presentation of performance data for enhanced tubes used in shell-and-tube heat exchangers. J. Heat Transfer 105 (1983) 358–365

    Google Scholar 

  22. ESDU: Forced convection heat transfer in circular tubes, part I: Correlations for fully-developed turbulent flow — their scope and limitations, Data Item No. 67016. London: ESDU International 1967

    Google Scholar 

  23. ESDU: Forced convection heat transfer in circular tubes, part III: Further data for turbulent flow, Data Item No. 68007. London: ESDU International 1968

    Google Scholar 

  24. Sieder, E. N.; Tate, C. E.: Heat transfer and pressure drop of liquids in tubes. Ind. Eng. Chem. 28 (1936) 1429–1435

    Google Scholar 

  25. ESDU: Forced convection heat transfer in circular tubes, part II: Data for laminar and transitional flows including free convection effects, Data Item No. 68006. London: ESDU International 1968

    Google Scholar 

  26. Bergles, A. E.: Experimental verification of analyses and correlation of the effects of temperature-dependent fluid properties on laminar heat transfer, in: Low Reynolds Number Flow Heat Exchangers (eds. Kakaç, S.; Shah, R. K.; Bergles, A. E.). Washington: Hemisphere (1983), pp. 473–486

    Google Scholar 

  27. Yang, W.-M.: Analysis of fluid flow and heat transfer in twisted circular-sector ducts. Num. Heat Transfer 10 (1986) 45–61

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr.-Ing. U. Grigull's 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manglik, R.M., Bergles, A.E. Heat transfer enhancement and pressure drop in viscous liquid flows in isothermal tubes with twisted-tape inserts. Wärme- und Stoffübertragung 27, 249–257 (1992). https://doi.org/10.1007/BF01589923

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01589923

Keywords

Navigation