Skip to main content
Log in

Temperature dependence of fractionation of hydrogen isotopes in aqueous sodium chloride solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The D/H ratios of hydrogen gas in equilibrium with aqueous sodium chloride solutions of 2, 4 and 6 molalities were determined within the range 10 to 95°C, using a hydrophobic platinum catalyst. With each of the different sodium chloride concentrations, the hydrogen isotope effect between the solution and pure water changes linearly with the square of the reciprocal temperature. On the basis of the results for hydrogen isotope fractionation observed in this study, and those of hydrogen isotope fractionation between pure water and vapor, it is concluded that the structure of the aqueous sodium chloride solution does not change significantly with temperature. The hydrogen isotope effect is evidently different from the results of vapor pressure isotope effects (VPIE) on sodium chloride solutions measured on separated isotopes. The difference between the present work and the VPIE studies is probably due to a non-ideal behavior in a mixture of isotopic water molecules and/or to a H2O-D2O disproportionation reaction in sodium chloride solutions. The distinction between the latter two mechanisms can not be differentiated at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Taube,J. Phys. Chem. 58, 523 (1954).

    Google Scholar 

  2. A. H. Truesdell,Earth Planet Sci. Lett. 23, 387 (1974).

    Google Scholar 

  3. M. K. Stewart and I. Friedman,J. Geophys. Res. 80, 3812 (1975).

    Google Scholar 

  4. M. Kakiuchi and S. Matsuo,J. Phys. Chem. 89, 4627 (1985).

    Google Scholar 

  5. H. M. Feder and H. Taube,J. Chem. Phys. 20, 1335 (1952).

    Google Scholar 

  6. Z. Sofer and J. R. Gat,Earth Planet Sci. Lett. 15, 232 (1972).

    Google Scholar 

  7. R. H. Betts, J. Bron, W. D. Buchannon, and K. D. Wu,Can. J. Chem. 55, 2966 (1977).

    Google Scholar 

  8. P. Bopp, K. Heinzinger, and A. Klemm,Z. Naturforsch. 32a, 1419 (1977).

    Google Scholar 

  9. J. R. O'Neil and A. H. Truesdell, inStable Isotope Geochemistry: A Tribute to Samuel Epstein, No. 3, (Geochemical Soceity Special Publ., 1991) p. 17.

  10. Z. Sofer and J. R. Gat,Earth Planet Sci. Lett. 26, 179 (1975).

    Google Scholar 

  11. M. Kakiuchi,Z. Naturforsch. 43a, 449 (1988).

    Google Scholar 

  12. C. M. Graham and S. M. F. Sheppard,Earth Planet Sci. Lett. 49, 237 (1980).

    Google Scholar 

  13. K. Kazahaya, Ph.D. Thesis, Tokyo Institute of Technology (1986), Chap. II.

  14. J. Horita, D. J. Wesolowski, and D. R. Cole,Geochim. Cosmochim. Acta 57, 2797 (1993).

    Google Scholar 

  15. J. H. Rolston, J. den Hartog, and J. P. Butler,J. Phys. Chem. 80, 1064 (1976).

    Google Scholar 

  16. H. Craig,Geochim. Cosmochim. Acta 12, 133 (1957).

    Google Scholar 

  17. S. Epstein and T. Mayeda,Geochim. Cosmochim. Acta 4, 213 (1953).

    Google Scholar 

  18. H. C. Urey,J. Chem. Soc. (London) 562 (1947).

  19. J. Bigeleisen and M. G. Mayer,J. Chem. Phys. 15, 261 (1947).

    Google Scholar 

  20. M. Majoube,J. Chim. Phys. 68, 1423 (1971).

    Google Scholar 

  21. R. E. Criss, inStable Isotope Geochemistry: A Tribute to Samuel Epstein, No. 3, (Geochemical Soceity Special Publ., 1991) p. 11.

  22. L. Merlivat, R. Botter, and G. Nief,J. Chim. Phys. 60, 56 (1963).

    Google Scholar 

  23. Y. Bottinga, Ph.D.Thesis, University of California (1968), Chap. V.

  24. G. D. Oliver and J. W. Grisard,J. Am. Chem. Soc. 78, 561 (1956).

    Google Scholar 

  25. R. L. Combs and H. A. Smith,J. Phys. Chem. 61, 441 (1957).

    Google Scholar 

  26. C. T. Liu and W. T. Lindsay,J. Chem. Eng. Data 15, 510 (1970).

    Google Scholar 

  27. J. Pupezin, G. Jakli, G. Jancso, and W. A. Van Hook,J. Phys. Chem. 76, 743 (1972).

    Google Scholar 

  28. M. Kakiuchi and S. Matsuo,Geochem. J. 13, 307 (1979).

    Google Scholar 

  29. W. M. Jones,J. Chem. Phys. 48, 207 (1968).

    Google Scholar 

  30. G. Jakli and W. A. Van Hook,J. Chem. Eng. Data 26, 243 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kakiuchi, M. Temperature dependence of fractionation of hydrogen isotopes in aqueous sodium chloride solutions. J Solution Chem 23, 1073–1087 (1994). https://doi.org/10.1007/BF00976257

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00976257

Key Words

Navigation