Skip to main content
Log in

Heat transfer of gas-particle flow in a supersonic convergent-divergent nozzle

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Summary

Heat flux, wall heat transfer coefficients, and wall pressures are determined for high velocity flow of gas-solid mixtures in a converging-diverging nozzle. Flow separation accompanied with oblique shock formation occurs in the diverging section of the nozzle. The shock strength is reduced upon the addition of solid particles. The wall pressure in the convergent section of the nozzle appears unaffected by the presence of solid particles. In the divergent section, however, the wall pressure is slightly lowered. At the maximum ratio of solid to air flow used in the experiments (3.7) increases in the heat transfer rate of up to 20 and 50 percent are obtained in the convergent and separated (divergent) regions of the nozzle, respectively. Slightly larger increases in the wall heat transfer coefficients are also obtained. It is concluded that the wall heat flux and heat transfer coefficients are influenced strongly by the presence of disturbances upstream of the nozzle inlet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W a :

air flow rate

W s :

solids flow rate

x :

axial distance from nozzle entrance

L :

axial length of nozzle

γ :

specific heat ratio of fluid

A e :

exit cross section of flow

A * :

throat cross section of flow

P 0 :

inlet pressure

P s :

wall separation pressure

P a :

ambient exhaust pressure

β :

shock wave angle

θ :

shock wave deflection angle

M 1 :

Mach number upstream of shock wave

\(M_{1_n } \) :

Mach number normal to shock wave

q :

heat flux

k f :

thermal conductivity of fluid

T wi :

inside wall temperature

T wo :

outside wall temperature

T ad :

adiabatic wall temperature

h :

wall heat transfer coefficient

C :

nozzle constant

A :

local cross section of flow

c p :

specific heat of fluid

Pr :

Prandtl number

μ :

viscosity of fluid

r c :

throat radius of curvature

σ :

factor accounting for variation of ρ and μ

absolute temperature °R(ankine):

°F+459.7

conductivity 1 BTU (hr ft °F)−1 :

4.137×10−3 cal (s cm °C)−1

specific heat 1 BTU (1b °F)−1 :

1 cal (g °C)−1

absolute pressure 1 psia:

0.0680 atm

References

  1. Gilbert, M., L. Davis, and D. Altman, ARS J. 25 (1955) 25.

    Google Scholar 

  2. Kliegel, J. R., One-Dimensional Flow of a Gas-Particle System, S.T.L. TR-59-0000-00746, 1959.

  3. Kliegel, J. R. and G. R. Nickerson, Progr. in Astronautics and Rocketry, Vol. 6 p. 173, Ed. S. S. Penner and F. A. Williams, Academic Press, New York 1962.

    Google Scholar 

  4. Bailey, W. S., E. N. Nilson, R. A. Serra, and T. F. Zupnik, ARS J. 31 (1961) 793.

    Google Scholar 

  5. Hogland, R. F., ARS J. 32 (1962) 662.

    Google Scholar 

  6. Rannie, W. D., Progr. in Astronautics and Rocketry, Vol. 6 p. 117, Ed. S. S. Penner and F. A. Williams, Academic Press, New York 1962.

    Google Scholar 

  7. Marble, F. E., Dynamics of a Gas Containing Small Solid Particles, presented at the Fifth AGARD Combustion and Propulsion Colloquium, Braunschweig, April 1962.

  8. Fortini, A. and R. C. Ehlers, NASA TN D1743, August 1963.

  9. Back, L. H., P. F. Massier, and H. L. Gier, Int. J. Heat Mass Transfer 7 (1964) 549.

    Article  Google Scholar 

  10. Back, L. H., P. F. Massier, and H. L. Gier, AIAA J. 3 (1965) 1606.

    Google Scholar 

  11. Sutton, G. P., Rocket Propulsion Elements, Wiley, New York 1949.

    Google Scholar 

  12. Zucrow, M. J., Aircraft and Missile Propulsion, Vol. 1, p. 366, Wiley, New York 1962.

    Google Scholar 

  13. Bloomer, H. E., R. J. Antl, and P. E. Renas, NASA TN D-846, June 1961.

  14. Arens, M. and E. Spiegler, AIAA J. 1 (1963) 578.

    Google Scholar 

  15. Farley, J. M. and C. E. Campbell, NASA TN D-293, October 1960.

  16. Kuethe, A. M. and J. D. Schetzer, Foundations of Aerodynamics, Wiley, New York 1959.

    Google Scholar 

  17. Sibulkin, M., J. Aero. Sci. 23 (1956) 162.

    Google Scholar 

  18. Bartz, D., ASME Trans. 77 (1955) 1235.

    Google Scholar 

  19. Seban, R. A. and D. Doughty, Heat transfer to laminar and turbulent boundary layers with constant and variable freestream velocity, University of California, Institute of Engineering Research, Series 41, No. 13, August 1954.

  20. Baron, J. R. and F. H. Durgin, An experimental investigation of heat transfer at the boundaries of supersonic nozzles, Naval Supersonic Laboratory, Massachusetts Institute of Technology, WADC Technical Report 54–541 (1954).

  21. Bartz, D., Jet Propulsion J. 27 (1957) 49.

    Google Scholar 

  22. Kolozsi, J. J., Masters thesis, Dept. of Aeronautics, Ohio State University (1958).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by aid provided by the UCLA Space Science Center (Grant NsG 236-62 Libby).

Listed for readers not familiar with the units adopted in this paper (editor).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wazzan, A.R., Robinson, L.B. & Diem, H.G. Heat transfer of gas-particle flow in a supersonic convergent-divergent nozzle. Appl. Sci. Res. 18, 288–308 (1968). https://doi.org/10.1007/BF00382354

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00382354

Keywords

Navigation