Skip to main content
Log in

Structure of the nonisothermal swirling gas-droplet flow behind an abrupt tube expansion

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Flow structure and heat and mass transfer in a swirling two-phase stream is numerically modeled using the Reynolds stress transport model. The gas phase is described by the 3DRANS system of equations with account for the inverse influence of particles on the transport processes in the gas. The gas phase turbulence is calculated using the Reynolds stress transport model with account for the presence of disperse particles. The two-phase nonswirling flow behind an abrupt tube expansion contains a secondary corner vortex which is absent from the swirling flow. The disperse phase is redistributed over the tube cross-section. Large particles are concentrated in the wall region of the channel under the action of the centrifugal forces, while the smaller particles are in the central zone of the chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Gol’dshtik, Vortex Flows [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  2. S.S. Kutateladze, E.P. Volchkov, and V.I. Terekhov, Aerodynamics and Heat and Mass Transfer in Confined Vortex Flows [in Russian], Novosibirsk (1987).

    Google Scholar 

  3. A. Gupta, L. Lilley, and N. Syred, Swirl Flows, Abacus Press, TurnbridgeWells (1984).

    Google Scholar 

  4. A.A. Khalatov, Theory and Practice of Swirling Flows [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  5. K. Hishida, T. Nagayasu, and M. Maeda, “Augmentation of Conductive Heat Transfer by an Effective Utilization of Droplet Inertia,” Int. J. Heat Mass Transfer 38, 1773 (1995).

    Article  Google Scholar 

  6. J.B. Fessler and J.K. Eaton, “Turbulence Modification by Particles in a Backward-Facing Step Flow,” J. Fluid Mech. 314, 97 (1999).

    Article  ADS  MATH  Google Scholar 

  7. E. Riber, V. Moureau,M. Garcia, T. Poinsot, and O. Simonin, “Evaluation of Numerical Strategies for Large Eddy Simulation of Particulate Two-Phase Recirculating Flows,” J. Comp. Phys. 228, 539 (2009).

    Article  ADS  MATH  Google Scholar 

  8. F. Li, H. Qi, and C.F. You, “Phase Doppler Anemometry Measurements and Analysis of Turbulence Modulation in Dilute Gas-Solid Two-Phase Shear Flows,” J. Fluid Mech. 663, 434 (2010).

    Article  ADS  MATH  Google Scholar 

  9. I. Senaha, Y. Miyafui, S. Kato, M. Higa, and M. Yaga, “Enhancement of Heat Transfer in the Downstream Region of a Backward-Facing Step Using a Small Amount of Mist (1st Report: Study of Heat Transfer Enhancement), (2nd report: Characteristics of Heat Transfer and Flow Behavior with Mist),” Trans. ASME. Pt. B 79, 1816 (2013).

    Google Scholar 

  10. M.A. Pakhomov and V.I. Terekhov, “Numerical Investigation of Flow and Heat Transfer in a Gas-Droplet Separated Turbulent Stream Using the Reynolds Stress Transfer Model,” Fluid Dynamics 48 (6), 789 (2013).

    Article  MATH  Google Scholar 

  11. M. Sommerfeld and H.-H. Qiu, “Detailed Measurements in a Swirling Particulate Two-Phase Flow by a Phase-Doppler Anemometer,” Int. J. Heat Fluid Flow 12, 20 (1991).

    Article  Google Scholar 

  12. M. Sommerfeld and H.-H. Qiu, “Characterization of Particle-Laden, Confined Swirling Flow by Phase-Doppler Anemometer and Numerical Calculation,” Int. J. Multiphase Flow 19, 1093 (1993).

    Article  MATH  Google Scholar 

  13. A.A. Vinberg, L.I. Zaichik, and V.A. Pershukov, “Calculation of Two-Phase Swirling Flows,” Fluid Dynamics 29 (1), 55 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. L.X. Zhou, C.M. Liao, and T. Chen, “Simulation of Strongly Swirling Turbulent Gas-Particle Flows Using USM and k–e–kP Two-Phase TurbulenceModels,” Powder Techn. 114, 1 (2001).

    Article  Google Scholar 

  15. M. Seirjich and F. Menter, “Computation Grid Refinement in Modeling a Swirling Two-Phase Flow,” Teplofiz. Aeromekh. 10, 171 (2003).

    Google Scholar 

  16. S.V. Apte, K. Manesh, P. Moin, and J.C. Oefelein, “Large Eddy Simulation of Swirling Particle-Laden Flows in a Coaxial-Jet Combustor,” Int. J. Multiphase Flow 29, 1311 (2003).

    Article  MATH  Google Scholar 

  17. L. Durdina, J. Jedelsky, and M. Jicha, “Investigation and Comparison of Spray Characteristics of Pressure-Swirl Atomizers for a Small-Sized Aircraft Turbine Engine,” Int. J. Heat Mass Transfer 78, 892 (2014).

    Article  Google Scholar 

  18. G. Klose, R. Schmehl, R. Meier, G. Maier, R. Koch, S. Wittig, M. Hettel, W. Leuckel, and N. Zarzalis, “Evaluation of Advanced Two-Phase Flow and Combustion Models for Predicting Low Emission Combustors,” ASME J. Gas Turbines Power 123, 817 (2001).

    Article  Google Scholar 

  19. A. Sadiki,M. Chrigui, J. Janicka, and M.R. Maneshkarimi, “Modeling and Simulation of Effects of Turbulence on Vaporization, Mixing and Combustion of Liquid-Fuel Sprays,” Flow, Turbulence and Combustion 75, 105 (2005).

    Article  MATH  Google Scholar 

  20. V. Sankaran and S. Menon, “LES of Spray Combustion in Swirling Flows,” J. Turbulence 3, paper 011 (2002).

    Google Scholar 

  21. S. Apte, K. Mahesh, M. Gorokhovski, and P. Moin, “Stochastic Modeling of Atomizing Spray in a Complex Swirl Injector Using Large Eddy Simulation,” Proc. Combustion Inst. 32, 2257 (2009).

    Article  Google Scholar 

  22. M. Sanjose, J.M. Senoner, F. Jaegle, B. Cuenot, S. Moreau, and T. Poisnot, “Fuel InjectionModel for Euler–Euler and Euler–Lagrange Large-Eddy Simulation of an Evaporating Spray inside an Aeronautical Combustor,” Int. J. Multiphase Flow 37, 514 (2011).

    Article  Google Scholar 

  23. S. Jakirlic, K. Hanjalic, and C. Tropea, “Modeling Rotating and Swirling Turbulence Flows: A Perpetual Challenge,” AIAA J. 40, 1984 (2002).

    Article  ADS  Google Scholar 

  24. R. Jester-Zuerker, S. Jakirlic, and C. Tropea, “ComputationalModeling of Turbulent Mixing in Confined Swirling Environment under Constant and Variable Density Conditions,” Flow, Turbulence and Combustion 75, 217 (2005).

    Article  MATH  Google Scholar 

  25. M.A. Pakhomov and V.I. Terekhov, “Modeling of Turbulent Structure of an Upward Polydisperse Gas-Liquid Flow,” Fluid Dynamics 50 (2), 229 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  26. M.A. Pakhomov and V.I. Terekhov, “Second Moment Closure Modelling of Flow, Turbulence and Heat Transfer in Droplet-Laden Mist Flow in a Vertical Pipe with Sudden Expansion,” Int. J.Heat Mass Transfer 66, 210 (2013).

    Article  Google Scholar 

  27. I.V. Dorevich and L.I. Zaichik, “Particle Deposition from a Turbulent Flow,” Fluid Dynamics 23 (5), 722 (1988).

    Article  ADS  Google Scholar 

  28. M.W. Reeks, “On a Kinetic Equation for the Transport of Particles in Turbulent Flows,” Phys. Fluids A 3, 446 (1991).

    Article  ADS  MATH  Google Scholar 

  29. R. Manceau and K. Hanjalic, “Elliptic Blending Model: A New Near-Wall Reynolds-Stress Turbulence Closure,” Phys. Fluids 14, 744 (2002).

    Article  ADS  MATH  Google Scholar 

  30. N. Beishuizen, B. Naud, and D. Roekaerts, “Evaluation of a Modified Reynolds-Stress Model for Turbulent Dispersed Two-Phase Flows Including Two-Way Coupling,” Flow, Turbulence and Combustion 79, 321 (2007).

    Article  MATH  Google Scholar 

  31. L.I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows,” Phys. Fluids 11, 1521 (1999).

    Article  ADS  MATH  Google Scholar 

  32. I.V. Derevich, “Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows. 1. Model Development,” Int. J. Heat Mass Transfer 43, 3709 (2000).

    Article  MATH  Google Scholar 

  33. K. Hanjalic and S. Jakirlic, “Contribution towards the Second-MomentClosureModelling of Separating Turbulent Flows,” Computers Fluids 27, 137 (1998).

    Article  MATH  Google Scholar 

  34. P.A. Dellenback, D.E. Metzger, and G.P. Neitzel, “Measurements in Turbulent Swirling Flow through an Abrupt Axisymmetric Expansion,” AIAA J. 26, 669 (1989).

    Article  ADS  Google Scholar 

  35. N. Garcia-Rosa, “Phénomènes d’allumage d’un foyer de turbomachine en conditions de haute altitude,” Ph. D. Thesis, Univ. de Toulouse, Institute Superieur de l’Aéronautique et de l’Espace, Toulose, France (2008).

    Google Scholar 

  36. K. Harstad and J. Bellan, “Modeling Evaporation of Jet a, JP-7, and RP-1 drops at 1 to 15 Bars,” Combust. Flame 137, 163 (2004).

    Article  Google Scholar 

  37. A.Yu. Varaksin, “Hydrogasdynamics and Thermal Physics of Two-Phase Flows. Problems and Advances,” Teplofiz. Vys. Temp. 51, 421 (2013).

    Google Scholar 

  38. A.N. Osiptsov, “Mathematical Modeling of Dusty-Gas Boundary Layers,” Appl. Math. Rev. 50, 357 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Pakhomov.

Additional information

Original Russian Text © M.A. Pakhomov, V.I. Terekhov, 2016, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2016, Vol. 51, No. 1, pp. 69–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakhomov, M.A., Terekhov, V.I. Structure of the nonisothermal swirling gas-droplet flow behind an abrupt tube expansion. Fluid Dyn 51, 70–80 (2016). https://doi.org/10.1134/S0015462816010087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462816010087

Keywords

Navigation